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Abstract. In the eighties, Hooley applied the Grand Riemann Hypothesis, and what
practically amounts to the general Langlands reciprocity (automorphy) conjecture, in a
fresh new way, over certain families of cubic threefolds. This eventually led to conditional
near-optimal bounds for the number N of integral solutions to x31 + · · ·+ x36 = 0 in expanding
boxes.

Elsewhere, building on Hooley’s work, we have given new applications of large-sieve
hypotheses, the Square-free Sieve Conjecture, and predictions of Random Matrix Theory
type, over the same geometric families—for instance, conditional optimal asymptotics for N
in a large class of regions, with applications to sums of three cubes. The underlying harmonic
analysis—which in rough form goes back to Kloosterman—picks up equally significant
contributions from the classical major and minor arcs in the circle method.

Here, we mainly provide extended summaries, commentary, and other complementary
material, leaving complete traditional accounts to papers available elsewhere. Two central
themes of this thesis are families (of arithmetic or analytic objects) and dichotomies (between
structure and randomness). We especially consider (mainly in relation to the aforementioned
cubic questions) families of regions, weights, point counts, oscillatory integrals, exponential
sums, Hasse–Weil L-functions, and quadratic equations; and dichotomies for point counts
over finite and infinite fields.
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Conventions

We let Z≥0 := {n ∈ Z : n ≥ 0}, and define Z≥2,R<0, . . . similarly.
We let 1E denote the indicator value of an event E; i.e. we let 1E := 1 if E holds, and

1E := 0 otherwise. When it would be too cumbersome to “restrict” a sum explicitly via
indicator notation, we use the shorthand

∑′ to denote a restricted sum, whose variables are
restricted according to context.

In number-theoretic contexts, p will denote a prime, and d a positive divisor. We let
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vp(−) denote the usual p-adic valuation. For n ∈ Z≥1, we let τ(n) :=
∑

d|n 1; ω(n) :=
∑

p|n 1;

ϕ(n) := n
∏

p|n(1− p−1); rad(n) :=
∏

p|n p; and µ(n) := 1n=rad(n) · (−1)ω(n). Given arithmetic
functions a, b, we let a ∗ b denote their Dirichlet convolution.

All L-functions will be analytically normalized (to have critical line ℜ(s) = 1/2, or an
analogous property in the case of general Hasse–Weil L-functions).

By default, ∥x∥ will refer to the ℓ∞-norm ∥x∥∞ := maxi(|xi|) when x is a vector. And in
the context of indices, [n] will denote the set {1, 2, . . . , n} when n ∈ Z≥0.

We let e(t) := e2πit (if t “makes sense” in R/Z), and er(t) := e(t/r) (for r ∈ R×).
We will use algebro-geometric notation freely, both for convenience and for rigor; but most

of our varieties and schemes will be explicitly embedded in a projective (or affine) space, and
applied to concrete questions. In general, we let VU(f)/R, or (by a minor abuse of notation)
VU(f)R, denote the closed subscheme of UR cut out by f = 0; we let VU(f1, . . . , fr)R denote
the scheme-theoretic intersection

⋂
i∈[r] VU(fi)R. If the base ring R is clear from context, we

may omit it.
Given a polynomial f(x1, . . . , xm), we let Hess(f) denote the usual m×m Hessian matrix,

det(Hess f) the Hessian determinant, hess(f)R := VAm(det(Hess f))R the affine Hessian
vanishing locus over R, and (when f is homogeneous) hess(VPm−1(f)R) := VPm−1(det(Hess f))R
the projective Hessian hypersurface over R.

We use the subscript notation ∂x := ∂/∂x for derivatives. We adopt multi-index notation
for multivariable calculus, especially in the context of derivatives; e.g. we let ∂rc := ∂r1c1 · · · ∂

rm
cm

(for r ∈ Zm≥0) and |b| :=
∑

i∈S bi (for b ∈ ZS).
We write f ≪S g, or g ≫S f , to mean |f | ≲S g, i.e. |f | ≤ Cg for some C = C(S) > 0. We

write f ≍S g if f ≪S g ≪S f . We let OS(g) denote a quantity that is ≪S g; and similarly,
ΩS(f) a quantity ≫S f , and ΘS(g) a quantity ≍S g. As usual, the implied constants C
throughout an argument will depend on one another in a logical fashion. A few clarifications
on our use of inexplicit inequalities may be helpful:

(1) We will often attach “size adjectives” to inexplicit inequalities when we really mean to
describe their implied constants; e.g. “if f ≪S g is small” would mean “if C is small in
terms of S, and if |f | ≤ Cg”.

(2) Typically “|f | ≤ Cg” will either appear in a statement as (i) a hypothesis, in which
case we allow C to be arbitrary, unless there is some restriction given explicitly
(e.g. “sufficiently small”) or by context (e.g. when applying a previous bound (X), the
constant C would simply be “copied” from (X)); or (ii) a conclusion, in which case C
would “follow” or “result” from the proof.

(3) In the context of the previous point, a phrase of the form “P unless Q” should be
read “if ¬P , then Q” (with “hypothesis” ¬P and “conclusion” Q); but we will try to
minimize our use of such “negative” phrases, since “positive” phrases like “if P , then Q”
or “Q, provided P” (with “hypothesis” P and “conclusion” Q) are generally expressive
enough for us.
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Chapter 1

Introduction

1.1 General motivation

Diophantine equations in the tradition of Hardy–Littlewood, and L-functions in the tradition
of Riemann, are both central objects in number theory. Some natural problems and questions
about them are the following:

(1) Count, produce, or bound solutions to algebraic equations over the integers (Z) or
related rings (e.g. Fp[t] or Fp, for various primes p).

(2) Prove approximations to the Grand Riemann Hypothesis (GRH) for individual L-
functions, or analyze statistics (especially those of Random Matrix Theory type) over
families.

(3) To what extent are (1)–(2) related?

Example 1.1.1 (BSD). Let C be a soluble cubic curve in P2
Q, cut out by F = 0 for some

ternary cubic form F ∈ Z[x, y, z] with nonzero discriminant. (For example, one could take
F = x3+y3+60z3, but not F = 3x3+4y3+5z3.) Then Birch and Swinnerton-Dyer conjectured
an equality between two integers: (1) rank J(C)(Q), which measures how many primitive
integral solutions (x, y, z) ∈ [−X,X]3 to F = 0 there are as X →∞; and (2) ords=1/2 L(s, C),
where L(s, C)—the Hasse–Weil L-function associated to C—roughly encodes the number of
solutions to F ≡ 0 mod p as p varies. In general, the “≥” direction, i.e. “producing” points,
remains especially mysterious (even over function fields), though both directions are difficult
and interesting. But the modularity theorem for the elliptic curve J(C) often allows one
to produce points, via Heegner points and the Gross–Zagier theorem; contrast with the use
of modularity in Wiles’ proof of Fermat’s last theorem (showing that certain points do not
exist).

Example 1.1.2 (Quadratic equations). The most difficult part of the solution of Hilbert’s
eleventh problem (up to questions of effectiveness), namely the part regarding integral
representations of integers by ternary quadratic forms with integral coefficients (due to
Iwaniec, Duke, and Schulze-Pillot over Q), also makes essential use of automorphic forms,
through subconvex L-function bounds obtained through the study of L-function families. See
e.g. [Sar00] for details.
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Rational representations are much simpler, with a very clean existence theory (a local-to-
global principle with no exceptions) given by Hasse–Minkowski, quantifiable by the sharpest
forms of the circle method (see e.g. [DFI93,HB96] over Q).

Since much of what we discuss below will be conditional on standard number-theoretic
conjectures, let us first make two remarks, to give some reasons to view “standard conjectures”
as valuable working hypotheses.

Remark 1.1.3. Given an (appropriately normalized) automorphic L-function L(s, π), GRH is
equivalent to the “naive probabilistic conjecture”

∑
n≤N µπ(n)≪π,ϵ N

1/2+ϵ [IK04, Proposi-
tion 5.14]. But what makes GRH so fascinating is that in addition to strong direct heuristic
and numerical evidence (at least in low dimensions) for its truth, there is striking indirect
evidence—from various comparisons with function field analogs and Random Matrix Theory
(RMT) models—going beyond what the “naive probabilistic conjecture” above would seem
to merit.

Meanwhile, given a (positive definite) ternary integral quadratic form such as F0 =
ax2 + by2 + cz2, the “naive conjecture” for rF0(n) := #{(x, y, z) ∈ Z3 : F0 = n} as n→∞
is simply false in general: while simple probabilistic models can detect local obstructions,
they miss further subtleties such as “exceptional square classes” arising from spinor norm
obstructions. As it turns out, rF0(n) does satisfy a certain natural asymptotic after adjusting
for such obstructions, but the known proofs (see Example 1.1.2) all use automorphic forms
or L-functions in an essential way.

Remark 1.1.4. Over global function fields, the analog of GRH is known. But modulo
(Langlands and) GRH, the analog of “counting points in natural regions on varieties” appears
so far to be comparable in difficulty to the problem over number fields. (There are, however,
more techniques available for the analogous softer question of “producing points” [Tia17].)

1.2 Main problems of interest

Though BSD remains wide open in general, one can certainly consider many other interesting
questions of a similar local-to-global nature, including both qualitative and quantitative
questions about certain cubic equations. In this thesis, we will focus on Examples 1.2.1
and 1.2.3 below.

Example 1.2.1 (The Fermat cubic fourfold). Let r3(a) := #{(x, y, z) ∈ Z3
≥0 : x

3 + y3 + z3 =
a}, for a ∈ Z≥0. For real X → ∞, let M2(X) :=

∑
0≤a≤X3 r3(a)

2. By Cauchy–Schwarz,

#{a ∈ [0, A] : r3(a) ̸= 0} ≫ A2/M2(A
1/3) for real A→∞.

Let F (x) = F (x1, . . . , x6) := x31 + · · ·+ x36. Then M2(X) = #{x ∈ Z6 ∩XK : F (x) = 0}
for some fixed compact region K ⊆ R6. Beginning with Hardy and Littlewood in [HL25]
(roughly), many authors, inspired in part by connections to the statistics of sums of three
cubes (via M2, for instance), have sought to estimate the number of solutions x ∈ Z6 to
F (x) = 0 in expanding boxes or other regions.

The integral solutions to F (x) = 0 are expected to exhibit a randomness-structure
dichotomy (along the lines of the Manin conjectures), as we now explain. The purely
probabilistic “Hardy–Littlewood model” predicts M2(X) ∼ cHL ·X6−3, where the constant
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cHL := σR ·
∏

p σp ∈ R>0 is a product of local densities measuring the “local” or “adelic”

(i.e. real and p-adic) bias of the equation F = 0 (over the regions K and Z6
p). But F =

0 also has ≍ X6/2 special solutions x ∈ Z6 ∩ XK, i.e. x with “xi + xj = 0 in pairs”
(e.g. x with x1 + x2 = x3 + x4 = x5 + x6 = 0). In fact, Hooley showed that M2(X) −
max (cHL ·X3,#{special x ∈ Z6 ∩XK}) ≫ X3 for all sufficiently large X ≫ 1 [Hoo86a,
Theorem 1 and the ensuing sentence], and conjectured thatM2(X) ∼ cHL ·X3+#{special x ∈
Z6 ∩XK} [Hoo86a, Conjecture 2]. For convenience, call this conjecture “HLH” (or “HLH
for (F,K)”).

What is known towards HLH? By Cauchy between “structure” and “randomness” (in four
and eight variables, respectively), Hua showed thatM2(X)≪ϵ X

7/2+ϵ [Hua38]. By isolating a
new source of randomness (“typical divisors” of integers x≪ X), Vaughan gave a more robust
proof of Hua’s bound, ultimately leading to the improvement M2(X) ≪ϵ X

7/2(logX)ϵ−5/2

[Vau86,Vau20]. Conditionally under a certain “Hypothesis HW” (practically amounting
to automorphy and GRH for the Hasse–Weil L-functions associated to smooth projective
hyperplane sections of the form F (x) = c · x = 0, for c ∈ Z6), Hooley established the
near-optimal bound M2(X)≪ϵ X

3+ϵ [Hoo86b,Hoo97], using an “upper-bound precursor” to
the delta method of [DFI93,HB96]; Heath-Brown proved (among other things) the same
result using the delta method [HB98], independently modulo [Hoo86b].

HLH lies beyond the classical Hardy–Littlewood circle method (according to square-root
“pointwise” minor arc considerations), though the “Hardy–Littlewood part” arises satisfactorily
from the classical major arcs. But the delta method opens the door to progress on HLH, by
harmonically decomposing the true minor arc contribution in a “dual” fashion (via Poisson
summation, essentially applied in the form of the Nyquist–Shannon sampling theorem). This
is the impetus for [Wan21d,Wan21a], papers to be discussed in Chapters 6–8 below.

Remark 1.2.2. The main results of [Wan21d,Wan21a] apply to diagonal cubic forms in six
variables, but to simplify notation, we will mostly focus on the Fermat case. The Fermat
case is arguably the most interesting anyways; a simple Hölder argument shows that out
of all diagonal cubic forms in six variables, the Fermat cubic has the greatest number,∫ 1

0
dθ
(∑

x∈Z∩[−X,X] e(θx
3)
)6
, of integral zeros x ∈ [−X,X]6.

On the other hand, to extend our work to general cubic forms in six variables (with nonzero
discriminant, say), it would take a lot of technical, but significant, work; see Chapters 6–8
below for some remarks on what is presently missing.

Example 1.2.3 (Sums of cubes). For integers s ≥ 1, let gs(y1, . . . , ys) := y31+· · ·+y3s . In 1825,
Ryley proved Q ⊆ g3(Q3) by explicitly constructing x, y, z ∈ Q(t) such that t = x3 + y3 + z3.
(See Example 1.3.4 below for details.)

How about writing a given integer a ∈ Z integrally in the form g3(Z3)? On the one hand,
g1(Z) ⊆ {0,±1} mod 9, so g3(Z3) ⊆ {0,±1,±2,±3} mod 9, which prevents each integer
a ≡ ±4 mod 9 from decomposing as a sum of three integer cubes. On the other hand,
as it turns out, there do not exist any other such local obstructions. Does every integer
a ̸≡ ±4 mod 9 in fact lie in g3(Z3)? (Cf. [HB92, p. 623].)

This question seems quite subtle: the space of possible representations seems “relatively
sparse on average” over a, and there is no known algorithm that can provably determine
whether an “arbitrary input” a ̸≡ ±4 mod 9 is represented or not. Even just to give a complete
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affirmative answer to the question in the finite range |a| < 100, Booker and Sutherland had to
search quite far (and even further to find a new representation of 3 = g3(1, 1, 1) = g3(4, 4,−5));
see Theorems 1.2.5 and 1.2.6 below.

In fact, even the weaker question of proving Z ⊆ g4(Z4) appears to be open (though it is
known that {a ̸≡ ±4 mod 9} ⊆ g4(Z4) [Dem66], and therefore that Z ⊆ g5(Z5)).

The situation is better on average: [Dav39] showed that asymptotically 100% of integers
a > 0 lie in g4(Z4

>0). (However, for general quaternary cubic forms with nonzero discriminant,
the analog of [Dav39]’s result is only known conditionally, by [Hoo16].) One of the main
goals of this thesis is to summarize our work [Wan21a] proving conditional results of a similar
flavor for g3(Z3

≥0) and g3(Z3).
For now, let us note that g3(Z3

≥0) contains≫ A0.91709477 integers a ∈ [0, A], unconditionally,
by [Woo95,Woo00,Woo15]; and ≫ϵ A

1−ϵ integers a ∈ [0, A], conditionally on Hypothesis
HW from Example 1.2.1, by [Hoo86b,Hoo97]. Both Wooley and Hooley use upper bounds
on certain second moments, in the spirit of Example 1.2.1. Wooley uses difficult iterative
arguments involving smooth numbers.

Remark 1.2.4. See Observation 1.3.2 and Remark 1.3.3 below for a discussion of possible
obstructions (or lack thereof) to the Hasse principle for g3(Z3) and related problems. In
general, while rational points can already be very subtle (see e.g. BSD), integral points can
be even subtler (see e.g. [Har17,Wil22]).

Theorem 1.2.5 ([Boo19]). Using integers with 16 digits,

g3(8866128975287528,−8778405442862239,−2736111468807040) = 33.

Theorem 1.2.6 ([BS21]). Using integers with 17 digits,

g3(−80538738812075974, 80435758145817515, 12602123297335631) = 42.

Also, using two integers with 21 digits, and a third with only 18 digits,

g3(569936821221962380720,−569936821113563493509,−472715493453327032) = 3,

thus affirmatively answering a question of Mordell.

1.3 Related background

For Observation 1.3.2 and Example 1.3.4, we need the following technical result:

Proposition 1.3.1 (Cf. [Poo17, Remark 9.4.11]). Fix a smooth projective cubic hypersurface
W of dimension d ≥ 2 over a field K. Then W (K) ̸= ∅ if and only if W is K-unirational;
and in this case, we must have W (K) = W if K is infinite.

Proof. The unirationality criterion is due to [Seg43] when (d,K) = (2,Q), and to [Kol02] in
general. The rest hinges on the fact that if #K =∞, then PdK(K) is dense in PdK .

Observation 1.3.2 (Based on [CG66]). Let h(y) = h(y1, y2, y3) := 5y31 + 12y32 + 9y33. Then
the Hasse principle for h(Z3) is false. More precisely, the “exceptional set” E(h) := {a ∈ Z :
h(y) = a fails Hasse} is nonempty.
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Proof. For an inhomogeneous ternary cubic P ∈ Q[y] = Q[y1, y2, y3], let WP denote the
hypersurface in P3

Q cut out by y34P (y/y4) = 0. By [CG66], the surface W = Wh+10 has
AQ-points, but no Q-points. This can be explained by W (AQ)

Br, the “Brauer–Manin set”
(BMS) for W (see [Man86, §47.6] and [Poo17, §9.4.9 and Remark 9.4.30]).

Now for convenience, let R-soluble mean “soluble over R”. Then by the previous paragraph,
h(y) + 10 = 0 is Qv-soluble for each place v ≤ ∞ (by Proposition 1.3.1, applied to WQv), but
not Q-soluble. In particular, there must exist a constant q ∈ Z\{0} such that h(y)+10t3 = 0
is Zp-soluble for each t ∈ qZ and prime p ≤ 5.

On the other hand, h(y) = a is Zp-soluble for each a ∈ Z and prime p ≥ 7 (as one can prove
using Hensel’s lemma and either the Cauchy–Davenport theorem or the Weil conjectures).
We conclude that for each t ∈ qZ \ {0}, the equation h(y) = −10t3 is AZ-soluble, but not
Z-soluble. In other words, E(h) ⊇ {−10t3 : t ∈ qZ \ {0}}.

Remark 1.3.3. The (rational!) BMS for Wh−a “explains” at least part of E(h). But that
for Wg3−a says nothing about the analogous set E(g3): even the integral (“entière”) Z-BMS
for g3 − a = 0 can never obstruct Z-solubility [CTW12, p. 1304]. (The BMS for Wg3−a can
obstruct weak approximation over Q [HB92, Theorem 1 and ensuing paragraphs]. This is
relevant to approximation questions for g3 − a = 0, but we have chosen to focus on Hasse
principles in Example 1.2.3.)

Nonetheless, could there be other obstructions? (For other affine cubic surfaces, there can
indeed be obstructions not “directly” explained by the Z-BMS; see [CTWX20, Theorem 5.14]
and [LM21, Theorem 1.5], both based “indirectly” on the Z-BMS. Cf. [CS20, Corollary 1.1]
and [LX15, Corollary 3.10], over Q.)

Let us now recall some background on producing points, related to Examples 1.2.1
and 1.2.3. This background will also illustrate how weaker goals (e.g. producing instead of
counting points) sometimes allow for greater flexibility and creativity.

Example 1.3.4. If a cubic equation over a field K has a sufficiently general solution over a
quadratic extension L/K, then it has a solution over K. (See also [Bir04, §3]’s discussion
of [Hee52] for a similar fact called “Heegner’s lemma”, for L/K of odd degree and “typical”
quartic y2 = f(x) over K.)

This idea (or alternatively, Proposition 1.3.1) can be used to geometrically derive Ryley’s
theorem that every rational number is a sum of three rational cubes, starting from a “trivial
solution at infinity”; see [Man86, Introduction].

Example 1.3.5. Using ternary quadratic forms, [Lin43] proved G(3) ≤ 7, i.e. every sufficiently
large integer is a sum of 7 positive cubes. This remains the record for G(3).

The expected asymptotic formula in Waring’s problem for 7 cubes remains unproven, but
would follow if one knew M2(X)≪ X3.25−δ (with M2(X) defined as in Example 1.2.1). The
asymptotic for 8 cubes is “barely” known [Vau86], but an easy proof would follow if one knew
M2(X)≪ X3.5−δ.

Example 1.3.6. Assume the finiteness of the Tate–Shafarevich group X(E/K) for every
quadratic extension K/Q and elliptic curve E = EA : X3 + Y 3 = AZ3. Then [SD01] proved,
over Q, the Hasse principle for diagonal cubic threefolds a1x

3
1 + · · · + a5x

3
5 = 0 in P4, and

for “typical” diagonal cubic surfaces in P3. The proof uses that diagonal hypersurfaces are
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DPC (dominated by a product of curves such as aix
3
i + ajx

3
j +Bx30 = 0), and a version of the

fibration method (i.e. finding a “nice” B).

Remark 1.3.7. Over Q, the Hasse principle for diagonal cubic hypersurfaces in Ps−1 is known
unconditionally for s ≥ 7 [Bak89]. For non-diagonal smooth cubic hypersurfaces in Ps−1, it is
known unconditionally for s ≥ 9 [Hoo88].

1.4 Outline and overview of chapters

Recall, from Example 1.2.1, Hooley’s conjecture on M2(X).
Chapter 2 shows that a slightly deformed version of Hooley’s conjecture would imply that

asymptotically 100% of integers a ̸≡ ±4 mod 9 are sums of three cubes. The proof follows
[Dia19], up to technical (but important) modifications. There is some flexibility in the choice
of deformation; we will show that “HLH for clean pairs (x31 + · · ·+ x36, w)”, in the sense of
Definitions 1.4.3 and 1.4.6 below, suffices.

Before proceeding, we first give two convenient general definitions.

Definition 1.4.1. Let s ∈ Z≥1. Given a function w : Rs → R and a polynomial P ∈ Z[x] =
Z[x1, . . . , xs], let NP,w(X) :=

∑
x∈Zs w(x/X) · 1P (x)=0 for real X > 0. If w is unspecified, we

use the symmetric box convention w(x̃) := 1x̃∈[−1,1]s .

Definition 1.4.2. Let R be a ring. Let s ∈ Z≥1. Given a homogeneous polynomial P that
lies in (or maps canonically into) R[x1, . . . , xs], we say P is Ps−1

R -smooth if its projective zero
locus VPs−1(P )/R is smooth; or equivalently, if P has invertible discriminant in R.

For analytic purposes, the following definition will prove useful:

Definition 1.4.3. Let s ∈ Z≥1. We will always interpret the support of a function on Rs in

the closed sense. Let w : Rs → R be a function; then Suppw := {x ∈ Rs : w(x) ̸= 0}. Let
P (x1, . . . , xs) be a Ps−1

R -smooth homogeneous polynomial. Call the pair (P,w) smooth if
0 /∈ Suppw, and clean if (Suppw) ∩ (hessP )R(R) = ∅; in other words, call (P,w) smooth
(resp. clean) if w is supported away from the locus x1 = · · · = xs = 0 in Rs (resp. the locus
det(HessP ) = 0 in Rs).

Remark 1.4.4. A clean pair (P,w) is smooth, since P is homogeneous.

Example 1.4.5. Let s ∈ Z≥1. Say P = x31 + · · ·+ x3s. Then P is Ps−1
R -smooth, and in fact

Ps−1
k -smooth for every field k of characteristic not dividing 3. Furthermore, (P,w) is clean if

and only if w is supported away from the set {x ∈ Rs : x1 · · · xs = 0}.

We now define a singular series, some special loci, some real densities, and a weighted
version of HLH. We emphasize that one could attribute the general formulation of HLH
(including that in Definition 1.4.6) to [Hoo86a, Conjecture 2], [VW95, Appendix], Manin–
Peyre, et al.

Definition 1.4.6. Let F ∈ Z[x] = Z[x1, . . . , x6] be a P5
Q-smooth 6-variable cubic form. Let

S0(n) :=
∑

a∈(Z/n)×
∑

x∈(Z/n)6 en(aF (x)) for n ∈ Z≥1; let SF :=
∑

n≥1 n
−6S0(n). Let C(SSV)
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denote the set of 3-dimensional vector spaces L/Q such that F |L = 0. Given L ∈ C(SSV),
let Λ := L ∩ Z6 denote the unique primitive sublattice of Z6 with Λ · Q = L. Then let
L⊥ := {c ∈ Q6 : c ⊥ L} and Λ⊥ := {c ∈ Z6 : c ⊥ Λ} denote the orthogonal complements of
L and Λ, respectively, with respect to the usual dot product c · x := c1x1 + · · ·+ c6x6 (so in
particular, Q ·Λ⊥ = L⊥). Now choose bases Λ,Λ⊥ of Λ,Λ⊥, viewed as 6× 3 and 3× 6 integer
matrices, respectively, so that Λ = ΛZ3 and Λ⊥ = Z3Λ⊥ (where we view Λ as a “column
space” and Λ⊥ as a “row space”).

Let w ∈ C∞
c (R6) be a smooth compactly supported weight. Let σ∞,F,w := limϵ→0 (2ϵ)

−1
∫
|F (x)|≤ϵ dxw(x).

For each L ∈ C(SSV), choose Λ⊥ as in the previous paragraph, and let σ∞,L⊥,w :=
limϵ→0 (2ϵ)

−3
∫
∥Λ⊥x∥∞≤ϵ dxw(x). Say (F,w) is Hardy–Littlewood–Hooley (HLH) if, as X →

∞, we have the asymptotic

NF,w(X) =

σ∞,F,wSF︸ ︷︷ ︸
randomness

+oF,w;X→∞(1) +
∑

L∈C(SSV)

σ∞,L⊥,w︸ ︷︷ ︸
structure

 ·X3.

(Here and elsewhere, we let oS;x→a(g) denote a quantity f such that the statement “for any
real ϵ > 0, we have |f | ≤ ϵg for all x in a neighborhood I = I(a, ϵ, S) of a” holds. We will
find this little-o notation occasionally convenient.)

Remark 1.4.7. Here SF is the usual singular series, and σ∞,F,w, σ∞,L⊥,w are real densities, all
given in technically convenient forms.1 Also, in the setting above, Λ = (Λ⊥)⊥, i.e. Λ = {x ∈
Z6 : Λ⊥x = 0}, so

∑
x∈Λw(x/X) = σ∞,L⊥,wX

3 +OL,w,A(X
−A), by Poisson summation over

Λ (or, at least morally, by the circle method applied to Λ⊥x = 0). In particular, σ∞,L⊥,w

does not depend on the choice of Λ⊥.

Remark 1.4.8. In this thesis, it would be OK to require a power-saving error term for HLH
in Definition 1.4.6. Also, one could analyze unweighted regions (see Appendix B). But at
least in Chapter 2, a soft and smooth formulation of HLH has some benefits.

Recall the discussion of (unconditional and conditional) upper bounds on M2(X), and
the connection to the equation x31 + · · ·+ x36 = 0, from Example 1.2.1. In Chapter 3, we will
introduce the delta method, which connects NF,w(X) (for cubic forms F in some generality,
at least when (F,w) is smooth) to the local behavior of the intersections F (x) = c · x = 0
over Fp,Zp,R, . . . , as c ∈ Z6 and p vary; and especially to certain associated Hasse–Weil
L-functions. Chapter 4 discusses two conditional approaches to upper-bounding M2(X) (or
Nx31+···+x36,w(X)), one based on the delta method and a large-sieve hypothesis (a la Bombieri–
Vinogradov), and the other based on a family of ternary quadratic forms; see §4.1 for the
former, and §4.2 for the latter. The former is probably more significant, but we include the
latter for amusement.

The following remark may provide a holistic view of the rough landscape so far.

Remark 1.4.9 (A cartoon). Let F0(y) := y31 + y32 + y33 first, and F (x) := x31 + · · ·+ x36 and
W := VA6(F )/Z second. Then the map A1 ← A3, F0(y)←[ y and the diagram

A3 F0−→ A1 F0←− A3 ×F0 A3︸ ︷︷ ︸
Cf. Examples 1.2.1 and 1.2.3

∼=W x←− {(x, c) ∈ W × A6 : c · x = 0} c−→ A6︸ ︷︷ ︸
Cf. [Klo26], . . . , [DFI93,HB96], . . .

1It is known that SF converges absolutely, and that σ∞,F,w, σ∞,L⊥,w are finite and well-behaved (though
a little care is needed for σ∞,F,w “at the origin” if (F,w) is not smooth).
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vaguely depict how when studying certain statistics (in ℓ1 and ℓ2), one can “reduce” from
the miserly individual equations F0 = a to the more generous family of auxiliary hyperplane
sections Wc := VA6(F, c ·x)/Z (over c ∈ Z6 \{0})—although the latter will appear “adelically”
through Wc(AZ), rather than “integrally” through Wc(Z).

(The cartoonish “right-hand half” is meant to represent the delta method for the affine
zero locus W ⊆ A6 of F ; see Chapter 3 for details.)

Remark 1.4.10. One could try counting W(Z) using inclusion-exclusion on Wc(Z) over
∥c∥ ≪ X1/(6−1) = X1/5 (in view of Siegel’s lemma on linear equations). As far as I can tell,
the delta method is distinct—even if it still involves Wc(AZ).

Chapter 5 discusses, among other things, a near dichotomy between randomness and
structure for the point counts of projective cubic threefolds over finite fields (with applications
to the aformentioned hyperplane sections F (x) = c ·x = 0), and raises some further questions
in this direction.

Chapter 6 discusses how to extract the main terms of HLH in a natural way, for smooth
pairs (F,w) with F diagonal in 6 variables. One of the main inputs is that for L ∈ C(SSV),
the lattices Λ := L∩Z6 “remain special” in some sense (cf. Chapter 5) for hyperplane sections
modulo n.

Chapter 7 discusses [Wan21a]’s new pointwise estimates for exponential sums and os-
cillatory integrals appearing in the delta method; these estimates hold for various kinds
of pairs (F,w). Over primes, the proofs involve Chapter 5; over prime powers, a study of
certain arithmetic fourfolds (relative threefolds over Zp); and over the reals, a critical use of
stationary phase beyond that of Hooley and Heath-Brown. The estimates give, for instance
(somewhat in the spirit of conjectures of Sarnak and Xue on “naive Ramanujan” failures, but
in a different context), a power-saving bound (conditional on limited ranges of the Square-free
Sieve Conjecture) on the frequency of certain “square-root cancellation” failures.

Chapter 8 discusses [Wan21a]’s conditional proof that HLH holds for clean pairs (F,w)
with F diagonal in 6 variables (and thus, by Chapter 2, that the “100% Hasse principle”
holds for sums of three cubes); the proof is conditional on some standard number-theoretic
conjectures—the main additions (relative to Hooley and Heath-Brown) being conjectures of
Random Matrix Theory (RMT) and Square-free Sieve type. The proof builds on Chapters 6
and 7. By Chapter 6, it suffices to bound the contribution Σ from smooth hyperplane sections
in the delta method. We first decompose Σ adelically into discriminant-based pieces; we then
conditionally estimate some of these pieces via local calculations and Poisson summation
(among other ingredients), and conditionally bound other pieces via Hölder’s inequality
between good and bad moduli factors (among other ingredients).

Remark 1.4.11. Recall Observation 1.3.2. Our methods for g3 would surely extend to
conditionally show that E(h) has density 0. These methods do not shed much further light
on the true sizes of such sets (a much deeper question). But the statement “E(−) has density
0” certainly cannot be improved to “E(−) = ∅” in general.

Chapter 9 discusses questions related to or inspired by the work above.
We will often refer to other papers for details, especially for certain proofs, but not at the

expense of the overall story.
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Chapter 2

Approximate variances

2.1 Introduction

Definition 2.1.1. Given a ∈ Z, let Fa(y) = Fa(y1, y2, y3) := y31 + y32 + y33 − a, and let
r3(a) := #{y ∈ Z3

≥0 : Fa(y) = 0}, so that r3(a) ≤ NFa(a
1/3).

Using the convenient structure Fa = F0−a, we will first estimate r3(a) “coarsely” in ℓ1, ℓ2

over a ≤ B, as B →∞—following a classical strategy (cf. Remark 1.4.9). Later, to obtain a
more precise result (Theorem 2.1.8), we will choose “nice” weights ν : R3 → R (cf. [Hoo16])
and bound NFa,ν(X) in “approximate variance” over a ≪ X3, as X → ∞—essentially
following [GS17,Dia19], up to smoothness.

Recall that [GS17] works with the equations x2 + y2 + z2 − xyz = a, which are “critical”
just like the equations x3 + y3 + z3 = a considered here and in [Dia19]. It is worth noting
that there are significant technical differences between [GS17] and [Dia19] (even though the
overall arguments are formally similar), such as the following:

(1) the nature of “exceptional” parametric solutions differs between the two;

(2) delicate issues involving binary quadratic forms arise in [GS17], but not in [Dia19]; and

(3) [GS17] engineers close-to-classical regions (for a family of quadratic equations), while
[Dia19] engineers far-from-classical regions (for a single cubic equation).

2.1.1 A moment framework

Recall the well-known first moment∑
a≤B

r3(a) = #{y ∈ Z3
≥0 : F0(y) ≤ B} ∝ B + oB→∞(B) as B →∞,

proven by writing Fa = F0−a, expanding r3(a) as a “vertical sum” along a fiber of F0 : Z3 → Z,
and then approximating the “total space” by a continuous volume.

In particular, Ea≤B[r3(a)] ≍ 1 holds for all B > 0. Now recall that [HL25] formulated the
ℓ∞ hypothesis r3(a)≪ϵ a

ϵ for a > 0 (Hypothesis K); but [Mah36] showed, via the identity
(9u4)3 + (3uv3 − 9u4)3 + (v4 − 9u3v)3 = v12, that r3(a) ≫ a1/12 holds for twelfth powers
a = v12 > 0.
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Remark 2.1.2. Mahler’s identity can be viewed as a “clever specialization” of a “Q-unirational
parameterization” of x3 + y3 + z3 = w3. In fact, Mahler’s identity can be recovered from
[Elk01], which parameterizes all Q-points on x3 + y3 + z3 = w3.

By Mahler’s construction, r3(a) can be very large for some individual a’s, but we can
still hope for reasonable statistical behavior as long as r3(a) is not “too large too often”—a
notion most readily formalized by taking higher moments of r3(a).

It seems difficult at present to rigorously analyze the third moment or higher. (The kth
moment is connected to the equation x31 + y31 + z31 = x32 + y32 + z32 = · · · = x3k + y3k + z3k,
which can be viewed as a system of k − 1 Diophantine equations in 3k variables. In light of
Mahler’s “special” a’s, even formulating reasonable conjectures for arbitrarily high moments
seems difficult, but see [DHL06] and [Dia19, §4] for plausible random models of sets like
{x3 + y3 + z3 : (x, y, z) ∈ Z3

≥0}.) But the second moment of r3(a) forms, by double counting,
a relatively simple “Diophantine sandwich”∑

a≤B

r3(a)
2 ≤ NF (B

1/3) =

∫
R/Z

dθ |T (θ)|6

≪
∫
R/Z

dθ (|T>0(θ)|6 + |T≤0(θ)|6)≪
∑
a≤3B

r3(a)
2

(unconditionally), where F := x31 + · · ·+ x36 and TS(θ) :=
∑

|x|≤B1/3 e(θx3) · 1x satisfies S. And

indeed, [HL25] really only applied the ℓ∞ Hypothesis K through the statement∑
a≤B

r3(a)
2 ≪ϵ B

1+ϵ as B →∞

(known conditionally, as discussed in Example 1.2.1), a weaker ℓ2 hypothesis (termed Hypoth-
esis K∗ by [Hoo97]) equivalent to “NF (B

1/3)≪ϵ B
1+ϵ as B →∞”.

Now we can combine the ℓ1 expectation Ea≤B[r3(a)] ≍ 1 with the “ℓ2 data” NF , to get
the following classical result (essentially already mentioned in Example 1.2.1):

Observation 2.1.3 (Second moment method). #{a ≤ B : r3(a) ̸= 0} ≫ B2/NF (B
1/3).

Proof. By Cauchy,
∑

a≤B r3(a)
2 ≥

(∑
a≤B r3(a)

)2
/#{a ≤ B : r3(a) ̸= 0}. (If there are too

few a ∈ Z with r3(a) ̸= 0, then the second moment is forced to be large. This idea comes in
many forms, e.g. the probabilistic Chung–Erdős inequality.)

In particular, if NF (B
1/3) ≪ B were known, then Observation 2.1.3 would imply that

{a ∈ Z : r3(a) ̸= 0} = F0(Z3
≥0) has positive lower density. Or if more precise estimates for

NF,w(X) were known in sufficient generality, then it would follow that F0(Z3) has density
7/9 in Z, essentially by [Dia19]—which we now introduce.

2.1.2 The need for increasingly lopsided regions

To prove, under our methods (based on [Dia19]), that F0 = a “almost always” satisfies the
Hasse principle, it will not suffice to statistically analyze the sequence a 7→ NFa,ν(X) (over a
range of the form a≪ν X

3) for only a single fixed weight ν. The following remark more or
less explains why.
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Remark 2.1.4. The upper density of {a ∈ Z≥0 : r3(a) ̸= 0} is at most Γ(4/3)3/6 ≈ 0.12
[Dav39]. In fact, say for each a ∈ Z we restrict to y ∈ a1/3 · Ω, with Ω ⊆ R3 fixed and
bounded. Then as |a| → ∞, the equation Fa(y) = 0 fails Hasse over a relative density 0.99
subset of a ∈ Z lying in some arithmetic progression depending on Ω [Dia19, §1].

Thus we will instead let ν vary. Specifically, certain increasingly skewed regions (cf. the
cuspidal regions in [Dia19, p. 26, Remark with pictures]) can help, as we now explain.

Observation 2.1.5. Fix an “inhomogeneity parameter” A ≥ 1. If X ≫A 1 is sufficiently large,
then the number of triples y ∈ Z3 with AX ≤ |y1|, |y2|, |y3| ≤ 2AX and |F0(y)| ≤ X3 is
Θ(X3).

Proof sketch. There are ≍ (AX)3 triples y ∈ Z3 with |y1|, |y2|, |y3| ∈ [AX, 2AX]. The event
|F0(y)| ≤ X3 occurs with probability ≍ X3/(AX)3 = 1/A3 among these triples, provided
that AX ≫ A3 is sufficiently large and 0 ∈ F0((1, 2), (1, 2), (−2,−1)).

Along these lines, Heath-Brown conjectured the following:

Conjecture 2.1.6 ([HB92, p. 623]). If a ̸≡ ±4 mod 9, then limX→∞NFa(X) =∞.

Conjecture 2.1.6 for individual a ̸≡ ±4 mod 9 might be very hard (if true), even condi-
tionally, so we will content ourselves with a (conditional) average study, which we now set
up.

2.1.3 A sketch of an approximate variance framework

Given ν, a,X, one can define certain densities σp,Fa , σ∞,Fa,ν(X). (For details, see §2.2, which
begins shortly below.) For a ∈ Z, informally write SFa

:=
∏

p<∞ σp,Fa , for expository
purposes. Now consider the naive Hardy–Littlewood prediction SFa · σ∞,Fa,ν(X) for NFa,ν(X).
Smaller moduli should have a greater effect in SFa ; furthermore, SFa itself—as is—can
be subtle (involving the behavior of L-functions at s = 1; cf. [DSP90, Theorem 3 and its
proof] and [HB96, Theorems 6–7]). So in the following definition, we work with a “restricted”
version of SFa · σ∞,Fa,ν(X).

Definition 2.1.7 (Cf. [Dia19, §3]). Fix ν : R3 → R and let w(ỹ, z̃) := ν(ỹ)ν(−z̃). Given
M ≥ 1, let K = K(M) :=

∏
p≤M p⌊logpM⌋ and sFa(K) := K−2 ·#{y ∈ (Z/K)3 : Fa(y) = 0}.

Then define the M-approximate (“finite-precision”) variance

Var(X,M) :=
∑
a∈Z

[NFa,ν(X)− sFa(K)σ∞,Fa,ν(X)]2 =: Σ1 − 2Σ2 + Σ3.

The most interesting sum among Σ1,Σ2,Σ3 is Σ1 :=
∑

a∈ZNFa,ν(X)2, which can be
rewritten as Nx31+···+x36,w(X). In fact, the main ideas of [Dia19, §§2–3] lead to the following
result:

Theorem 2.1.8 (Cf. [Dia19, Theorem 3.3]). Suppose (x31 + · · ·+ x36, w) is HLH (in the sense
of Definition 1.4.6) for every fixed choice of w ∈ C∞

c (R6) with (x31 + · · ·+ x36, w) clean. Then
asymptotically 100% of integers a ̸≡ ±4 mod 9 are sums of three cubes.

For the proof—differing from [Dia19] only in technical aspects—see §2.2.
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2.2 Details

2.2.1 Defining the local densities of individual fibers

Recall the notation Fa(y) := F0(y)− a, where F0(y) := y31 + y32 + y33. We first define certain
non-archimedean densities.

Definition 2.2.1. For a ∈ Zp, let σp,Fa
:= liml→∞(p−2l ·#{y ∈ (Z/pl)3 : Fa(y) = 0}).

Next, we define certain real densities (analogously to the p-adic densities σp,Fa), by
“ϵ-thickening” parallel to the 0-level set (i.e. the fiber over 0) of the map Fa : R3 → R.

Definition 2.2.2. Fix ν ∈ C∞
c (R3) with (F0, ν) smooth (in the sense of Definition 1.4.3).

Now fix X ∈ R>0. Then for (y, a) ∈ R3 × R, write ỹ := y/X and ã := a/X3. Also, for all
a ∈ R, let

σ∞,Fa,ν(X) := lim
ϵ→0

(2ϵ)−1

∫
|Fa(y)/X3|≤ϵ

d(y/X) ν(y/X).

Observation 2.2.3. Here σ∞,Fa,ν(X) = σ∞,Fã,ν(1). (Indeed, by definition, we have σ∞,Fa,ν(X) =
limϵ→0 (2ϵ)

−1
∫
|F0(ỹ)−ã|≤ϵ dỹ ν(ỹ) = σ∞,Fã,ν(1).)

Remark 2.2.4. In particular, for a ̸= 0 at least, σ∞,Fa,ν(a
1/3) = σ∞,F1,ν(1) is constant.

Essentially for this reason, perhaps, many references do not seem to treat real densities very
thoroughly.

Before proceeding, we make two conceptual remarks on real densities, for completeness.

Remark 2.2.5. The function ã 7→ σ∞,Fa,ν(X) is supported on a bounded range ã ≪ν 1, on
which the ϵ-limit converges uniformly at a rate depending only on F0, ν. Generally, if α is
“nice” and αϵ := α(t/ϵ) (e.g. αϵ(t) = 1|t|≤ϵ above), then∫

R3 dỹ ν(ỹ)αϵ(F0(ỹ)− ã)∫
R dt αϵ(t)

= σ∞,Fa,ν(X) +OF0,ν,α(ϵ).

Remark 2.2.6. Here dã σ∞,Fa,ν(X) = (F0)∗(dỹ ν(ỹ)) as a pushforward measure, so that∫
R dã σ∞,Fa,ν(X)g(ã) =

∫
R3 dỹ ν(ỹ)g(F0(ỹ)) holds for all “nice” g : R→ R.

For convenience (when working with σ∞,Fa,ν(X)), we now observe the following:

Observation 2.2.7. Define π1 : R3 → R by y 7→ y1. Fix ν ∈ C∞
c (R3) such that 0 /∈ π1(Supp ν).

Now fix (a,X) ∈ R× R>0. Then a change of variables from ỹ1 to F0 := F0(ỹ) proves

σ∞,Fa,ν(X) =

∫
R2

dỹ2 dỹ3 ν(ỹ) · |∂ỹ1/∂F0|F0=ã︸ ︷︷ ︸
local ỹ1-density

=

∫
R2

dỹ2 dỹ3 ν(ỹ) · |∂F0/∂ỹ1︸ ︷︷ ︸
escape rate

|−1
F0=ã

,

where ∂F0/∂ỹ1 = 3ỹ21 ≫ν 1 over the support of the integrand.

Proof. Cf. [HB96, proof of Lemma 11].

At least in the absence of better surface coordinates, the earlier “ϵ-thickening” still
provides greater intuition, while the surface integral allows for effortless rigor.

The following technical bound will come up later, when integrating by parts.
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Proposition 2.2.8. Fix ν ∈ C∞
c (R3) with (F0, ν) smooth. Then for integers k ≥ 0, we have

∂kã [σ∞,Fa,ν(X)]≪k,ν 1, uniformly over (a,X) ∈ R× R>0.

Proof when 0 /∈ π1(Supp ν). Consider the surface integral representation of σ∞,Fa,ν(X) from
Observation 2.2.7. The integrand vanishes unless ã, ỹ2, ỹ3 ≪ν 1. Fix ỹ2, ỹ3 ≪ν 1, and let ỹ1
vary with ã according to F0(ỹ) = ã. Then ∂ã[ỹ1] = (3ỹ21)

−1 ≪ν 1. Now repeatedly apply ∂ã
to the integrand (using Leibniz and the chain rule).

Proof in general. Use a suitable partition of unity.

2.2.2 Interpreting the approximate variance

Let y, z denote 3-vectors, and define xi := yi for i ∈ [3] and xi+3 := zi for i ∈ [3]. Let
ỹ := y/X, etc. Now fix ν ∈ C∞

c (R3) with (F0, ν) smooth. Recall, from Definition 2.1.7, the
definitions of w,K(M), sFa(K),Var(X,M),Σ1,Σ2,Σ3.

By double counting (and the “symmetric” ν-factorization of w), the ℓ2 moment Σ1 :=∑
a∈ZNFa,ν(X)2 equals NF,w(X), where F := x31 + · · ·+ x36.
Also, by analogy with standard probability theory, we expect an ℓ1 calculation to show

that Σ2 ≈ Σ3. However, a rigorous proof (of such a fact) takes some nontrivial work, since
sFa(K)σ∞,Fa,ν(X) varies with a. To begin, write

Σ3 :=
∑
a∈Z

[sFa(K)σ∞,Fa,ν(X)]2 =
∑

b mod K

sFb
(K)2

∑
a≡b mod K

σ∞,Fa,ν(X)2

by collecting along fibers of Z→ Z/K, and write

Σ2 :=
∑
a∈Z

NFa,ν(X)sFa(K)σ∞,Fa,ν(X)

=
∑
z∈Z3

ν(z/X)sFF0(z)
(K)σ∞,FF0(z)

,ν(X)

=
∑

d mod K

sFF0(d)
(K)

∑
z≡d mod K

ν(z/X)σ∞,FF0(z)
,ν(X)

by expanding NFa,ν(X) along fibers of F0 : Z3 → Z and collecting along Z3 → (Z/K)3.
To simplify Σ2,Σ3 further, we will use Poisson summation, as well as the following

observation:

Observation 2.2.9. The “pure L2 moment”
∫
a∈R dã σ∞,Fa,ν(X)2 and the “mixed L1 moment”∫

z̃∈R3 dz̃ ν(z̃)σ∞,FF0(z)
,ν(X) both simplify to σ∞,F,w.

Proof when 0 /∈ π1(Supp ν). First, Fa := F0 − a, so
∫
a∈R dã σ∞,Fa,ν(X)2 expands (via Obser-

vation 2.2.7) to ∫
R4

dỹ2 · · · dz̃3
∫
ỹ1∈R

dF0(ỹ)
ν(ỹ)ν(z̃)

∂1F0|ỹ
(∂1F0|z̃)−1|F0(ỹ)=F0(z̃),

which simplifies to
∫
R5 dỹ2 · · · dỹ1w(x̃) · (∂1F0|z̃)−1|F (x̃)=0 = σ∞,F,w.
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Second, FF0(z) = F0(y)− F0(z), so by Observation 2.2.7,∫
z̃∈R3

dz̃ ν(z̃)σ∞,FF0(z)
,ν(X) =

∫
R3×R2

dz̃ dỹ2 dỹ3 ν(ỹ)ν(z̃) · (∂1F0|ỹ)−1|F0(ỹ)=F0(z̃),

which again simplifies to σ∞,F,w.

Proof in general. Argue in terms of ϵ-thickenings. Alternatively, generalize to a “bilinear”
statement (involving two weights ν1, ν2, rather than just one); then reduce the bilinear
statement to a surface integral computation (based on a general version of Observation 2.2.7),
after taking suitable partitions of unity.

Proposition 2.2.10 (Cf. [Dia19, proof of Lemma 3.1]). Uniformly over X,K and b,d mod K
with X ≥ K ≥ 1, we have∑

a≡b mod K

σ∞,Fa,ν(X)2 = K−1X3σ∞,F,w +Oj,ν((X
3/K)−j)

and ∑
z≡d mod K

ν(z/X)σ∞,FF0(z)
,ν(X) = K−3X3σ∞,F,w +Oj,ν((X/K)−j).

Proof sketch. By Poisson summation over K · Z and K · Z3, the sums are approximately

K−1

∫
a∈R

da σ∞,Fa,ν(X)2 = K−1X3σ∞,F,w

and

K−3

∫
z∈R3

dz ν(z/X)σ∞,FF0(z)
,ν(X) = K−3X3σ∞,F,w,

respectively (where we have simplified the integrals using the previous observation), up to
“errors” (i.e. “off-center contributions”) of ≪ν,j K

−1X3(X3/K)−j and ≪ν,j K
−3X3(X/K)−j,

respectively. (For proof, bound the first “off-center contribution” absolutely by∑
c̸=0

K−1

∣∣∣∣∫
a∈R

da σ∞,Fa,ν(X)2e(−c · a/K)

∣∣∣∣ ;
then plug in a = X3ã, repeatedly integrate by parts in ã, and invoke Proposition 2.2.8. The
second “off-center contribution” is similar.)

It follows from the previous proposition (and the trivial bound |sFb
(K)| ≤ K) that

Σ3 = S(K) · σ∞,F,wX
3 +K3 ·Oj,ν((X

3/K)−j),

where S(K) := K−1
∑

b mod K sFb
(K)2 = K−5 ·#{x ∈ (Z/K)6 : F (x) = 0}.

Similarly,

K−3
∑

d mod K

sFF0(d)
(K) = K−3

∑
b mod K

[K2 · sFb
(K)] · sFb

(K) = S(K)

by collecting along fibers of F0 : (Z/K)3 → Z/K, so

Σ2 = S(K) · σ∞,F,wX
3 +K4 ·Oj,ν((X/K)−j).
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Lemma 2.2.11 (Cf. [Dia19, Lemma 3.1]). Uniformly over X,M ≥ 1 with X ≥ K(M) ≥ 1,
we have S(K) = SF +Oϵ(M

−2/3+ϵ) and

Var(X,M) = NF,w(X)− S(K) · σ∞,F,wX
3 +K4 ·Oj,ν((X/K)−j).

Proof. For the second part, use Var(X,M) = Σ1 − 2Σ2 + Σ3. For the first part, note that
p6vS(pv) =

∑
a∈Z/pv

∑
x∈(Z/pv)6 epv(aF (x)) =

∑
l∈[0,v] p

6(v−l)S0(p
l) (cf. [Dav05, Lemma 5.3]),

whence S(K) =
∑

n|K n
−6S0(n). Yet SF =

∑
n≥1 n

−6S0(n) (by Definition 1.4.6), and n | K
for all n ∈ [1,M ], so

|S(K)−SF | ≤
∑
n>M

n−6|S0(n)| ≪ϵ M
(4−6)/3+ϵ =M−2/3+ϵ

by standard bounds (e.g. Lemma 3.4.1 below), as desired.

Consequently, if (F,w) is HLH (in the sense of Definition 1.4.6), then

Var(X,M) = [NF,w(X)−SF · σ∞,F,wX
3] +O(M−20/31 · σ∞,F,wX

3) +
Oν(K

4)

(X/K)100

=

oν;X→∞(1) +
∑

L∈C(SSV)

σ∞,L⊥,w

X3 +O

(
σ∞,F,wX

3

M20/31

)
+

Oν(K
4)

(X/K)100
,

the most interesting term being the diagonal-type contribution
∑

L∈C(SSV) σ∞,L⊥,wX
3.

2.2.3 Applying increasingly cuspidal weights

The preceding analysis applies to arbitrary ν ∈ C∞
c (R3) with (F0, ν) smooth. Now we finally

choose specific ν’s. Fix a nonnegative, even weight w0 ∈ C∞
c (R) with w0|[−1,1] ≥ 1, and a

nonnegative weight D ∈ C∞
c (R>0) with D|[1,2] ≥ 1.

Definition 2.2.12. Given A0 ∈ R≥1, set

ν(ỹ) = νw0,D,A0(ỹ) := w0(F0(ỹ))

∫
A∈[1,A0]

d×A
∏
i∈[3]

D(|ỹi|/A),

where d×A := dA/A. Then set w(x̃) := ν(ỹ)ν(−z̃) = ν(ỹ)ν(z̃).

Remark 2.2.13. The integral over A enlarges the search space for representations of numbers
by F0. Essentially, we search among y with X ≪ |y1| ≍ |y2| ≍ |y3| ≪ A0X and |F0(y)| ≪ X3.
It is important that the special locus y1 + y2 = 0 (with ỹ33 = F0(ỹ) ∈ Suppw0) does not
accumulate when integrated over A. Cf. [Dia19, discussion on p. 24]. (By “switching”

∫
,
∏
,

we could instead consider all y with X ≪ |y1|, |y2|, |y3| ≪ A0X and |F0(y)| ≪ X3, but then
we would also need to “manually” restrict to |y1 + y2| ≫ X, etc. Cf. [Dia19, p. 24, definition
of R∗

N ].)

Remark 2.2.14. In view of Example 1.4.5, the use of the “dyadic” weight D ensures that the
pairs (F0, ν) and (F,w) are not only smooth, but also clean.
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Remark 2.2.15. Pointwise, |ν(ỹ)| ≪
∫
R>0

d×AD(|ỹ1|/A) = ∥D ◦ log∥L1(R) ≪ 1, and in general

∥ν∥k,∞ ≪k 1 (i.e. the derivatives of ν of order ≤ k are uniformly bounded). On the other hand,
vol(Supp ν) ≍ logA0 truly grows with A0. (To prove vol(Supp ν) ≪ logA0, fix A ∈ [1, A0]
and |ỹ1|, |ỹ2| ∈ [A, 2A], and note that {ỹ3 ∈ ±[A, 2A] : F0(ỹ) ∈ Suppw0} has length ≪ 1/A2.
To prove vol(Supp ν) ≫ logA0, use similar but more careful ideas, based on the fact that
w0|[−1,1] ≥ 1 and D|[1,2] ≥ 1.)

Why require w0|[−1,1] ≥ 1 and D|[1,2] ≥ 1? Recall that

σ∞,Fa,ν(X) = σ∞,Fã,ν(1) = lim
ϵ→0

(2ϵ)−1

∫
|F0(ỹ)−ã|≤ϵ

dỹ ν(ỹ).

Now fix ϵ, plug in the definition of ν, switch the order of ỹ, A, and fix A ∈ [1, A0]. If |ã| ≤ 1
and ϵ ≤ 0.1, then w0(F0(ỹ))

∏
i∈[3]D(|ỹi|/A) ≥ 1 certainly holds on the set

Sϵ,A,ã := {ỹ ∈ R3 : |ỹi| ∈ [A, 2A] and F0(ỹ) ∈ [ã− ϵ, ã+ ϵ] ∩ [−1, 1]},

and furthermore, vol(Sϵ,A,ã)≫ A3 · (ϵ/AdegF0) = ϵ (as one can prove by restricting attention
to ỹ1, ỹ2 ∈ [A, 1.1A], for instance). Thus for |a| ≤ X3, we have

σ∞,Fa,ν(X)≫ lim
ϵ→0

(2ϵ)−1

∫
A∈[1,A0]

d×Aϵ≫ logA0.

This proves the first part of the following observation:

Observation 2.2.16 (Cf. [Dia19, §2’s analysis]). Uniformly over A0 ≥ 1, we have

(1) σ∞,Fa,ν(X)≫ logA0 uniformly over |a| ≤ X3, while

(2) σ∞,L⊥,w ≪ logA0 for all L ∈ C(SSV).

Remark 2.2.17. The first part implies σ∞,F,w =
∫
a∈R dã σ∞,Fa,ν(X)2 ≫ (logA0)

2. In fact, one
can show that σ∞,Fa,ν(X)≪ logA0 holds for all a ∈ R, whence σ∞,F,w ≪ (logA0)

2 as well.

Proof of second part. Fix L. By symmetry, there are really only two cases:

(1) L is cut out by yi + zi = 0, i.e. xi + xi+3 = 0, over i ∈ {1, 2, 3}.

(2) L is cut out by y1 + y2 = z1 + z2 = y3 + z3 = 0, i.e. x1 + x2 = x4 + x5 = x3 + x6 = 0.

In the first case,

σ∞,L⊥,w = lim
ϵ→0

(2ϵ)−3

∫
|ỹi+z̃i|≤ϵ

dx̃w(ỹ, z̃) =

∫
R3

dỹw(ỹ,−ỹ)≪ vol(Supp ν)≪ logA0.

In the second case, σ∞,L⊥,w =
∫
R3 dỹ1 dz̃1 dỹ3w(ỹ, z̃)|L ≪ 1, because every point (ỹ1, z̃1, ỹ3) ∈

Supp(w|L) must satisfy the following three conditions: (a) w0(ỹ
3
3) ̸= 0, whence ỹ3 ≪ 1; (b)

|ỹ1| ≍ |ỹ3|; and (c) |z̃1| ≍ |z̃3| = |ỹ3|.

Finally, we prove Theorem 2.1.8.
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Proof of Theorem 2.1.8. The hypothesis of Theorem 2.1.8 implies, in particular, that our
pair (F,w) (constructed above, given A0) is HLH for every fixed choice of A0.

Now, towards the conclusion of Theorem 2.1.8, note that we may restrict attention to
a ≥ 0, by symmetry. To proceed, we follow [Dia19, proof of Theorem 3.3], who first shows
(via local calculations sketched later) that

K−1
∑′

1≤a≤K

1

sFa(K)
≤
∏
p=3

O(1)
∏

p≡2 mod 3

(1 +O(p−3))
∏

p≡1 mod 3

(1 +O(p−3/2))≪ 1,

where we restrict to a ̸≡ 4, 5 mod 9 (i.e. locally admissible integers).
Now fix δ > 0 arbitrarily small. Suppose 9 | K and X ≥ K ≥ 1. The previous

display implies that sFa(K) ≥ δ for all but an O(δ) fraction of admissible residues a mod K.
But by construction, σ∞,Fa,ν(X) ≫ logA0 uniformly over |a| ≤ X3. Thus ρa,ν(X) :=
sFa(K)σ∞,Fa,ν(X)≫ δ logA0 holds for all but an O(δ) fraction of admissible integers a ≤ X3.
So if A0 ≥ 2, say, then

⋆ := #{admissible a ≤ X3 : NFa(∞) = 0}
≤ #{admissible a ≤ X3 : |NFa,ν(X)− ρa,ν(X)| ≥ ρa,ν(X)/2}

≤ O

(
δX3 +

Var(X,M)

δ2(logA0)2

)
.

(The preceding display—a variant of Chebyshev’s inequality—may be quite far from the truth.
But without higher moments, we cannot say more.) By HLH and the bound σ∞,L⊥,w ≪ logA0,
though,

Var(X,M) ≤ [oν;X→∞(1) +O(logA0)]X
3 +O(X3σ∞,F,wM

−20/31) +K4Oν((X/K)−100).

To finish, fix A0 ≫δ 1 so that O(δ−2(logA0)
−2) ·O(logA0) ≤ δ. Recall that A0 determines ν,

and fix M ≫δ,A0 1 so that O(δ−2(logA0)
−2) · O(σ∞,F,wM

−20/31) ≤ δ. Then ⋆ ≤ O(δX3) for
all sufficiently large X ≫δ,A0,K 1. Since δ > 0 was arbitrary, we are done.

Remark 2.2.18. If we assumed a power saving in HLH, with “O(A
O(1)
0 X3−Ω(1))” in place of

oν;X→∞(X3), then we would likely be able to let A0 grow as a small power of X, and M, δ as
small powers of (logX)±1. We would then likely get “⋆≪ X3/(logX)Ω(1)” as X →∞. For
proof, we would need the following ingredients (for fixed w0, D), not all proven above:

(1) K ≪ϵ X
ϵ (true for M = o(logX), since in general, logK(M) ∼M as M →∞);

(2) (logA0)
−2 · σ∞,F,w ≍ 1 (a fact essentially remarked earlier); and

(3) replacing “K4Oν((X/K)−100)” with “O(diam(Supp ν)O(1)K4(X/K)−100) (by analyzing
the ν-dependence in our error estimate from Poisson summation, stemming from
Proposition 2.2.8).

Sketch of local calculations. See [Dia19, pp. 10–11 (proof of Theorem 1.4(ii)) and pp. 32–34]
for details, including the necessary Hensel lifting to moduli p≥2 at each prime p. The 3-adic
densities, in particular, require a bit more lifting work than the densities for p ̸= 3 do.
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At p ≡ 1 mod 3, the local calculations mostly boil down to a finite linear combina-
tion of cubic characters χ mod p (evaluated at certain points depending on F0, a), since
F0 = a is an affine diagonal cubic surface over Fp when a ≠ 0. (Unlike with CM ellip-
tic curves, Hecke characters of infinite order, e.g. signed normalized cubic Gauss sums
−g̃(χ) = −p−1/2

∑
x∈Fp

χ(x)ep(x), do not arise, except in secondary terms related to F0 = 0.)
Ultimately here,∑

a∈Fp

1

sFa(p)
=
∑
a∈Fp

p2

#{y ∈ F3
p : Fa(y) = 0}

= 1 +O(p−1/2) +
(p− 1)/3

1 + 6/p+O(p−3/2)
+

2(p− 1)/3

1− 3/p+O(p−3/2)

= 1 +O(p−1/2) + (p− 1)[1− (1/3)(6/p) + (2/3)(3/p)] = p+O(p−1/2).

(The precise “O(p−1/2)” is roughly proportional to 1
p
(ap(E) +O(1)), where E := VP2(F0)/Q.)

At primes p ≡ 2 mod 3, the local calculations are easier (as if F0 were linear), due to
bijectivity of the function x 7→ x3 on Fp.
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Chapter 3

Review of the delta method

3.1 The basic setup

Let m ∈ Z≥3. Let F ∈ Z[x] = Z[x1, . . . , xm] be an m-variable cubic form with nonzero
discriminant. Let V := VPm−1(F )/Z and V := VQ = VPm−1(F )/Q be cut out by F = 0. Then
V , the generic fiber of V , is a smooth projective hypersurface in Pm−1

Q . For c ∈ Zm, we define
hyperplane sections Vc, Vc via the following convenient general definition:

Definition 3.1.1. Given a ring R, an m-tuple c that “makes sense” in Rm (or more precisely,
an m-tuple c that maps canonically into Rm), and a closed subscheme W ⊆ Pm−1

R , define Wc

to be the scheme-theoretic intersection W ∩ {c · x = 0}.

Remark 3.1.2. If c ∈ Qm, then Vc is a hypersurface in (Pm−1
Q )c (since F is irreducible), where

(Pm−1
Q )c ∼= Pm−2

Q if c ̸= 0.

Definition 3.1.3. If n ∈ Z≥1, then for each m-tuple c that “makes sense” in (Z/n)m, let
Sc(n) :=

∑
a∈(Z/n)×

∑
x∈(Z/n)m en(aF (x) + c ·x) and S̃c(n) := n−(m+1)/2Sc(n). Then for each

c ∈ Zm, let Φ(c, s) :=
∑

n≥1 S̃c(n)n
−s.

Now fix w ∈ C∞
c (Rm) with (F,w) smooth (in the sense of Definition 1.4.3), and suppose

we are interested in the weighted zero count NF,w(X) (from Definition 1.4.1) for real X >
0. We begin by choosing “standard cutoff parameters” in the delta method, following
[DFI93,HB96,HB98].

Definition 3.1.4. Set Y := X(degF )/2 = X3/2 to be, roughly, the largest modulus used in
the delta method—and given ϵ0 ∈ (0, 10−10], set Z = Zϵ0 := Y/X1−ϵ0 = X1/2+ϵ0 . (To have
correct epsilon management, we have named this epsilon ϵ0 to be safe.)

Before proceeding, let us recall the standard intuition behind the delta method—intuition
one can formalize via eq. (3.1), Proposition 3.1.6, and Lemma 3.1.7 below.

Remark 3.1.5 (Intuition). If x≪ X, then F (x)≪ X3. So it is natural to try using a total
of ≍ X3 harmonics to “detect” the condition F (x) = 0 over x≪ X. Since the delta method
morally uses ≍ Y 2 harmonics (corresponding to proper reduced fractions with denominator
≪ Y ), this suggests setting Y 2 ≍ X3.
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(Smaller choices of Y could in principle also be worth considering; see the quartic analysis
of [MV19]. See §9.2 for some discussion.)

One then encounters certain “pseudo-exponential sums to modulus n≪ Y ” over x≪ X.
These sums are typically “incomplete” (since X = o(Y )). By “completing” these sums using
Poisson summation, we end up with “dual sums” morally of length ⪅ Y/X ≍ X1/2.

By [HB96, Theorem 2, (1.2)] (based on [DFI93])—or rather, [HB96, (1.2), up to easy
manipulations from §3 involving the formula (3.3) and the switching of n, c]—we have
(uniformly over X > 0)

(1 +OA(Y
−A)) ·NF,w(X) = Y −2

∑
n≥1

∑
c∈Zm

n−mSc(n)Ic(n), (3.1)

where Sc(n) is defined as in Definition 3.1.3, and where (in terms of a certain function h(−,−)
typically left in the background; see e.g. [HB98, eq. (2.3)] for the definition)

Ic(n) :=

∫
x∈Rm

dxw(x/X)h(n/Y, F (x)/Y 2)en(−c · x),

for c ∈ Zm. Dimensional analysis suggests the normalization

Ĩc(n) := X−mIc(n) =

∫
x̃∈Rm

dx̃w(x̃)h(n/Y, F (x̃))en/X(−c · x̃)

(using Y 2 = XdegF to get F (x)/Y 2 = F (x̃) for x̃ := x/X). Eq. (3.1) then becomes

(1 +OA(X
−A)) ·NF,w(X) = Xm−3

∑
n≥1

∑
c∈Zm

n−(m−1)/2S̃c(n)Ĩc(n). (3.2)

We have referred to the switching of n, c as “easy” because the compact support of w
guarantees that Ic(n) is supported on finitely many moduli n, and is rapidly decaying in ∥c∥
for each n. These qualitative facts—important for [HB96, §3, proof of Theorem 2] (which at
one point switches n, c to get to [HB96, (1.2)]), and for us—follow from the following two
standard results, which will soon begin to play an important quantitative role as well.

Proposition 3.1.6 (Vanishing for large n). The functions n 7→ Ic(n) are supported on
n≪F,w Y , uniformly over c ∈ Zm.

Proof. See e.g. [HB96, par. 1 of §7]. The vanishing of Ic(n) for n≫F,w Y sufficiently large is
a consequence of the choice Y ≍ X(degF )/2 and the definition of h(−,−).

As a sanity check, note that if X ≪F,w 1 is sufficiently small, then Proposition 3.1.6 yields
Ic(n) = 0 for all n ≥ 1, whence the right-hand side of eq. (3.1) vanishes. This is consistent
with the fact that the “true” factor of 1+OA(Y

−A) on the left-hand side of eq. (3.1) vanishes
for Y < 1 (cf. [HB96, left-hand side of (3.3) for Q < 1]).

The case X ≤ 1, say, is similarly uninteresting: if X is bounded, then both sides of
eq. (3.1) are trivially bounded as well. So from now on, we assume X ≥ 1.

Lemma 3.1.7 (Decay for large c). If ∥c∥ ≥ Z and n ≥ 1, then Ic(n)≪ϵ0,A ∥c∥−A.
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Proof. See e.g. [HB98, Lemma 3.2, (3.9)].

Proposition 3.1.6 and Lemma 3.1.7 easily (and comfortably) imply the absolute bound

Y −2
∑
n≥1

∑
∥c∥≥Z

n−m|Sc(n)| · |Ic(n)| ≪F,w,ϵ0,A X
−A

(even if we only use the trivial bound |Sc(n)| ≤ n1+m). To analyze NF,w(X), as X →∞, via
eq. (3.2), it thus precisely remains to understand (for arbitrarily small ϵ0) the quantity

Xm−3
∑
n≥1

∑
∥c∥≤Z

n−(m−1)/2S̃c(n)Ĩc(n). (3.3)

(Here Ĩc(n) = Ĩc(n) · 1n≪Y for a suitable factor 1n≪Y . But it is more convenient to keep the
factor implicit, to allow for more flexible technique.)

3.2 Exponential sums and L-functions

The sums Sc(n) have some nice properties originating from the homogeneity of F (crucial in
our analysis, and likewise in [Hoo86b,Hoo97,HB98]).

(1) The function n 7→ Sc(n) is multiplicative, i.e. Sc(n1n2) = Sc(n1)Sc(n2) if (n1, n2) = 1.

(2) The function (F, c) 7→ Sc(n) is scale-invariant, e.g. Sc(n) = Sλc(n) if λ ∈ (Z/n)×.

In particular, (2) suggests that Sc might only depend on homogeneous geometric invariants
of (F, c). This is indeed the case. We now recall some of the main invariants involved.

Definition 3.2.1. Let m∗ := m− 3. For a prime power q, and an m-tuple c that “makes
sense” in Fmq , let ρ(q), ρc(q) be the respective Fq-point counts of VFq , (VFq)c. Normalize the
“errors” E(q) := ρ(q) − (qm−1 − 1)/(q − 1) and Ec(q) := ρc(q) − (qm−2 − 1)/(q − 1) to get

Ẽ(q) := q−(1+m∗)/2E(q) and Ẽc(q) := q−m∗/2Ec(q).

Remark 3.2.2. Perhaps somewhat confusingly, E0(q) ̸= E(q).

Proposition-Definition 3.2.3 (Classical). Up to scaling, there is a unique F∨ ∈ Z[c] \ {0}
of degree 3 · 2m−2 such that if c ∈ Cm \ {0}, then F∨(c) = 0 if and only if (VC)c is singular.

Now fix F∨. Then F∨ is homogeneous, and irreducible over C. Informally, we call F∨ a
(geometric) discriminant form. Furthermore, we may choose F∨ so that for all c ∈ Zm and
primes p ∤ F∨(c), the special fiber (Vc)Fp is smooth of dimension m∗.

Proof. In general, see [Wan22, Appendix A] (for a discriminant-based perspective) or [Wan21d,
Remark A.3] (for a perspective based on dual varieties). When F is diagonal, see [Wan21c,
Proposition-Definition 1.8] for an explicit treatment; for example, if F = x31 + · · ·+ x3m, then

we may take F∨ = 3
∏
(c

3/2
1 ± c

3/2
2 ± · · · ± c

3/2
m ).

For c ∈ Zm, recall that Sc is multiplicative. So S̃c is too. Now we recall some standard
formulas at prime powers.
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Proposition 3.2.4. Say p ∤ c. Then Sc(p) = p2Ec(p)− pE(p).

Proof sketch. Although [Hoo86b, p. 69, (47)] assumes p ∤ F∨(c) and F = x31 + · · ·+ x36, the
underlying arguments work more generally; cf. [Hoo14, Lemma 7]. Because F is homogeneous,
we have Sc(p) = Sλc(p) for all λ ∈ F×

p . So

(p− 1)Sc(p) =
∑

λ,a∈F×
p

∑
x∈Fm

p

ep(aF (x) + λc · x)

=
∑
x∈Fm

p

(p · 1p|F (x) − 1)(p · 1p|c·x − 1) = p2(p− 1)Ec(p)− p(p− 1)E(p)

if p ∤ c. (The factor p2(p− 1) comes from summing over λ, a and taking an affine cone over
(VFp)c.)

Remark 3.2.5. If p | c, then Sc(p) = S0(p) = p2E(p)− pE(p) instead.

In particular, S̃c(p) = Ẽc(p) − p−1/2Ẽ(p) at primes p ∤ F∨(c). Here Ẽ(p) ≪ 1, by the
Weil conjectures (after “absorbing” bad primes for F into the implied constant).

Proposition 3.2.6. Say p ∤ F∨(c). Then Sc(p
l) = 0 for all integers l ≥ 2.

Proof sketch. Although [Hoo86b, Lemma 7] assumes F = x31 + · · ·+ x36, the underlying proof
immediately generalizes; see [Hoo14, Lemma 10]. This time, scalar symmetry in c (using
homogeneity of F ) gives

ϕ(pl)Sc(p
l) =

∑
x∈(Z/pl)m

[−pl−1 · 1pl−1|c·x + pl · 1pl|c·x][−pl−1 · 1pl−1|F (x) + pl · 1pl|F (x)].

So Sc(p
l) = 0 is equivalent to certain statements about point counts. One can prove these

statements by Hensel lifting; the lifting calculus follows dimension predictions, because
p ∤ F∨(c) implies (by Proposition-Definition 3.2.3) that the Fp-variety (VFp)c is smooth of
codimension 2.

Consequently, we know that

(1) S̃c(p) = Ẽc(p)− p−1/2Ẽ(p) if p ∤ c (e.g. if p ∤ F∨(c)),

(2) S̃c(p) = S̃0(p) = (p1/2 − p−1/2)Ẽ(p) if p | c, and

(3) S̃c(p
l) = 0 for l ≥ 2 if p ∤ F∨(c).

But if c ∈ Zm and p ∤ F∨(c), then (Vc)Fp is a smooth complete intersection in Pm−1
Fp

of
dimension m∗ and multi-degree (3, 1). By the theory of ℓ-adic cohomology (including the
Grothendieck–Lefschetz fixed-point theorem and the resolution of the Weil conjectures), we
can thus make the following definition:

26



Definition 3.2.7. Fix c ∈ Zm with F∨(c) ̸= 0, i.e. with Vc smooth of dimension m∗. Then
for each prime p ∤ F∨(c), define the analytically normalized local factor

Lp(s, Vc) := exp

(
(−1)m∗

∑
r≥1

Ẽc(p
r)
(p−s)r

r

)

=

dimm∗∏
j=1

(1− α̃c,j(p)p
−s)−1 =:

∑
l≥0

λ̃c(p
l)p−ls

of degree dimm∗ := rank(Hm∗
sing(Vc(C),Z)/H

m∗
sing(Pm−1(C),Z)) = A3,m∗+2, where

Ad,s := #{a ∈ [d− 1]s : a1 + · · ·+ as ≡ 0 mod d} = (d− 1)s + (−1)s(d− 1)

d

for integers d, s ≥ 1 (following [Wei49, p. 506]). Here the α̃c,j(p) denote certain “normalized”
Frobenius eigenvalues (known to satisfy |α̃c,j(p)| = 1).

Remark 3.2.8. Each Vc above is a subvariety of Pm−1
Q , so Hm∗

sing(· · ·)/H
m∗
sing(· · ·) is well-defined.

Also, each Lp(s, Vc) above is well-defined: for any c, c′ ∈ Zm with Vc = Vc′ , one can
show (e.g. by smooth proper base change) that Ec(q) = Ec′(q) holds for all prime powers
q coprime to F∨(c)F∨(c′). (To avoid discussing the two points above, we could write
−12|m∗ +rankHm∗

sing(Vc(C),Z) in place of rank(· · ·/· · ·), and Lp(s, c) in place of Lp(s, Vc). But
the current notation is more transparent and suggestive.)

In particular, if p ∤ F∨(c), then (−1)m∗Ẽc(p) =
∑

j α̃c,j(p) = λ̃c(p), so Ẽc(p) ≪m 1.

(Similarly, we have Ẽ(p)≪F 1 uniformly over all primes p.) So for each fixed c ∈ Zm with
F∨(c) ̸= 0, we roughly expect an approximation of the form

Φ(c, s) ≈
∏

p∤F∨(c)

Lp(s, Vc)
(−1)m∗

(“to leading order”).

Indeed, the works [Hoo86b,Hoo97,HB98,Wan21c] are based on the intuitive notion of a
“first-order approximation” of a Dirichlet series. One could imagine many different precise
definitions—perhaps useful for different purposes. We now make the following convenient
(but not necessarily comprehensive or all-purpose) definition:

Definition 3.2.9. Fix a family of Dirichlet series Ψ1(c, s) indexed by {c ∈ Zm : F∨(c) ̸= 0}.
For each c, let bc(n), ac(n), a

′
c(n) be the nth coefficients of the Dirichlet series Ψ1,Ψ

−1
1 ,Φ(c, s)/Ψ1,

respectively. Suppose that

(1) bc is multiplicative, i.e. Ψ1 has a (formal) Euler product;

(2) bc(n), a
′
c(n)≪ϵ n

ϵ
∑

d|n|S̃c(d)| holds uniformly over c, n; and

(3) a′c(p) · 1p∤F∨(c) ≪ p−1/2 holds uniformly over c, p with p prime.

Then we call Ψ1 a (one-sided, first-order, Euler-product) approximation of Φ.
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Example 3.2.10. Suppose m ∈ {4, 6} and for each c, we let Ψ1(c, s) := L(s, Vc)
−1, with

the standard Hasse–Weil L-function L(s, Vc), defined as in [Hoo86b] for F = x31 + · · ·+ x36
(though the definition readily generalizes; see e.g. [HB98]); for primes p ∤ F∨(c) the local
factor agrees with the Lp(s, Vc) defined earlier. Then Ψ1 is an approximation of Φ, in the
sense of Definition 3.2.9.

Proof sketch. Say p ∤ F∨(c). Then (if µc(−) denote the coefficients of 1/L(s, Vc))

a′c(p) := S̃c(p) + µc(p) = S̃c(p)− Ẽc(p) = −p−1/2Ẽ(p)≪ p−1/2.

Also, a′c(p
k) = µc(p

k) + S̃c(p)µc(p
k−1)≪ϵ p

kϵ for all k ≥ 2, since S̃c(p
l) = 0 for l ≥ 2. More

care is needed to handle primes p | F∨(c); we need the general bound bc(n), ac(n) ≪ϵ n
ϵ,

which is luckily known for m ∈ {4, 6}.

Remark 3.2.11. The aforementioned works [Hoo86b,Hoo97,HB98] are based on a certain
“Hypothesis HW” (mentioned in Example 1.2.1) for the Hasse–Weil L-functions L(s, Vc). Fix
c, let 1/L(s, Vc) =:

∑
n≥1 µc(n)n

−s, and let q(Vc) denote a certain “conductor” associated
to Vc. In lieu of precisely recalling Hypothesis HW—which amounts to certain Selberg-type
axioms (e.g. suitable analytic continuation), plus GRH—we simply record the following
conjectures, each known to imply the next:

(1) Certain Langlands-type conjectures, plus GRH, for L(s, Vc).

(2) Hypothesis HW for L(s, Vc).

(3) A certain standard elementary “uniform square-root cancellation” bound—namely∑
n≤N µc(n)≪m,3,ϵ q(Vc)

ϵN1/2+ϵ (with an implied constant depending only on m, 3, ϵ).

Here, chief among the “Langlands-type conjectures” in (1) is automorphy, i.e. (a general form
of) Langlands reciprocity—a statement generalizing the modularity of elliptic curves.

Remark 3.2.12. Later, in Chapter 8, we will work directly with (1), rather than with “avatars”
like (2). This is natural, in view of “analytic-to-automorphic” converse theorems (in other
natural families of Dirichlet series)—and because (1), modulo GRH, not only lies in a more
conceptual framework, but also offers the only known approach to proving (2), modulo GRH.

3.3 Main unconditional general pointwise bounds

For the rest of Chapter 3, assume F is diagonal. For technical reasons, we will analyze the
c’s in groups depending on how many coordinates are zero. It would be interesting to find a
similar notion for non-diagonal forms F .

Definition 3.3.1. Given I ⊆ [m] of size r ≤ m, we call the set R ⊆ [−Z,Z]m of c ∈ Zm
with cj ∈ [−Z,Z] \ {0} for j ∈ I and cj = 0 for j /∈ I a (uniform) r-dimensional deleted box.

Let R ⊆ [−Z,Z]m be a deleted box with |I| = r ∈ [0,m]. Then we can bound the sums

S̃c(n) := n−(m+1)/2Sc(n) using the somewhat crude but general pointwise bound given by the
next result (available since F is diagonal).
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Definition 3.3.2. For an integer n ≥ 1, let sq(n) :=
∏

p2|n p
vp(n) denote the square-full part

of n, and cub(n) :=
∏

p3|n p
vp(n) the cube-full part of n.

Proposition 3.3.3 ([Hoo86b,HB98]). For all c ∈ Zm and integers n ≥ 1, we have

n−1/2|S̃c(n)| ≪F O(1)
ω(n)

∏
j∈[m]

gcd(cub(n)1/6, gcd(cub(n), sq(cj))
1/4).

Here we interpret gcd(−,−) formally in terms of exponents that are allowed to be rational.

Proof. In general S̃c(n) = n−(m+1)/2Sc(n) by definition, and for diagonal F we have

|Sc(p
l)| ≪ (p∞, OF (1))

O(1) · pl(1+m/2)
∏
j∈[m]

gcd(cub(pl)1/6, gcd(cub(pl), sq(cj))
1/4)

by [HB98, p. 682, (5.1)–(5.2)] for l ≥ 2 and [HB83, Lemma 11] for l = 1.

Remark 3.3.4. We have stated Proposition 3.3.3 uniformly over c ∈ Zm. But given R,
Proposition 3.3.3 implies that for all c ∈ R and integers n ≥ 1, we have

n−1/2|S̃c(n)| ≪F O(1)
ω(n) cub(n)(m−r)/6

∏
j∈I

gcd(cub(n), sq(cj))
1/4.

It is this simpler statement that we typically use.

Now we turn to the integrals Ĩc(n) := X−mIc(n), assuming r ≥ 1. (We cover c = 0
in §3.4.) The statement [HB98, p. 678, Lemma 3.2] covers the essential cases k = 0, 1 in
the next result (which, like Proposition 3.3.3, is available since F is diagonal). We state
a generalization to all k ≥ 0, just in case it comes in handy for some (future) smoothing
purposes.

Lemma 3.3.5 (Main n-aspect bounds). Uniformly over c ∈ R and n ∈ [1/2,∞), we have

nk|∂knĨc(n)| ≪k,ϵ X
ϵ

(
X∥c∥
n

)1−(m+r)/4∏
i∈I

(
∥c∥
|ci|

)1/2

for k = 0, 1, 2, . . . .

Furthermore, if B ∈ C∞
c (R>0) is supported on [1/2, 1], then nk+1|∂kn[y−1B(n/y)Ĩc(n)]| satisfies

the same bound for all n ∈ (0,∞), uniformly as y ≥ 1 varies.

Proof. By [Wan21g, Remark 4.1 and Lemma 4.9], we know that (for all c ∈ Rm \ {0})

nk · ∂knIc(n)≪k,ϵ

(
X∥c∥
n

)
Xm+ϵ

m∏
i=1

min[(n/X|ci|)1/2, (n/X∥c∥)1/4],

and that nk+1 · ∂kn[y−1B(n/y)Ic(n)] satisfies the same bound. Now “replace” min[−,−] with
(n/X|ci|)1/2 for each i ∈ I, and with (n/X∥c∥)1/4 for each i ∈ [m] \ I; this bounds the
right-hand side by Xm+ϵ(X∥c∥/n)1−(m−r)/4∏

i∈I(n/X|ci|)1/2, which (after dividing by Xm)

simplifies to what we want (since Ĩc(n) := X−mIc(n)).
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Remark 3.3.6. We should emphasize that the above bounds on Ic(n) are likely only valid (as
written) for the usual (and present) setting of the parameter Y ≍ X(degF )/2 = X3/2.

Remark 3.3.7. If (F,w) is clean, then nk|∂knĨc(n)| ≪k,ϵ X
ϵmin(1, (X∥c∥/n)1−m/2)≪ Xϵ(X∥c∥/n)1−m/2;

cf. [Hoo14, p. 252].

Remark 3.3.8. It would be interesting to know the optimal asymptotics, e.g. whether or not
the bound remains true with a smaller power of X∥c∥/n. At least for generic c, one might
expect to reduce the exponent 1−m/2 using a deeper stationary phase analysis (implemented
to some extent in Chapter 7).

3.4 Contribution from the central terms

Here we address c = 0 in (3.3), using the theory of I0(n) developed in [HB96]. This section is
standard, and does not require F to be diagonal (see [Wan21d, Appendix B]), but we keep the
diagonality assumption for convenience. We begin with a slight variant of [Vau97, Lemma 4.9].

Lemma 3.4.1. If N > 0, then
∑

n≍N n
−m|S0(n)| ≪ϵ N

(4−m)/3+ϵ.

Proof. F is diagonal, so by Proposition 3.3.3 (or [Vau97, Lemma 4.7]) and Hölder, n−mS0(n)≪
O(1)ω(n)n1−m/2 cub(n)m/6. If n3 := cub(n) (so that n3 is cube-full), then it follows that∑

n≍N

n−m|S0(n)| ≪ϵ

∑′

n3≪N

(N/n3) ·N1−m/2+ϵn
m/6
3 ≍

∑′

N3≪N

N
1/3
3 ·N2−m/2+ϵN

m/6−1
3 ,

where N3 ranges over {1, 2, 4, 8, . . . }. Since 1/3 + (m/6− 1) = (m− 4)/6 ≥ 0, the right-hand
side is ≪ϵ N

(m−4)/6+ϵ ·N2−m/2+ϵ = N (4−m)/3+2ϵ, as desired.

In particular, by Lemma 3.4.1 (or [Vau97, proof of Lemma 4.9]), the singular series

S :=
∑
n≥1

n−mS0(n)

converges absolutely for m ≥ 5. On the other hand, the real density

σ∞,w := lim
ϵ→0

(2ϵ)−1

∫
|F (x)|≤ϵ

dxw(x)

is OF,w(1) (as one can show using [HB96, Theorem 3], for instance).

Yet by [HB96, Lemma 13], Ĩ0(n) = σ∞,w +OA((n/Y )A) for all sufficiently small n≪ Y—

hence for all n ≥ 1 (since Ĩ0(n) ≪ 1 always, by [HB96, Lemma 16]). On the other hand,

Ĩ0(n) = 0 for all sufficiently large n ≫ Y (by Proposition 3.1.6). So by Lemma 3.4.1, the

sum
∑

n≥1 n
−mS0(n)Ĩ0(n) simplifies to(
S−

∑′

N≫Y

Oϵ(N
(4−m)/3+ϵ)

)
σ∞,w +

∑′

N≪Y

OA,ϵ

(
N (4−m)/3+ϵ(N/Y )A

)
,
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where N ranges over {1, 2, 4, 8, . . . }. For A = (m− 3)/3, both N -sums are geometric series

peaking at N ≍ Y (since we have assumed X ≥ 1). Since n−mS0(n) = n−(m−1)/2S̃0(n), it
follows that if m ≥ 5, then

Xm−3
∑
n≥1

n−(m−1)/2S̃0(n)Ĩ0(n) = Xm−3 · [σ∞,wS+Oϵ(X
(4−m)/2+ϵ)].

On the other hand, for all m ≥ 4,

Xm−3
∑
n≥1

n−(m−1)/2S̃0(n)Ĩ0(n)≪ Xm−3
∑
n≥1

n−m|S0(n)| · 1n≪Y ≪ϵ X
m−3+ϵ

by Hölder and [Vau97, Lemma 4.9].

Remark 3.4.2. One may well do better by analyzing the Dirichlet series
∑

n≥1 n
−sS0(n), using

the derivative bound ∂knI0(n)≪k n
−kXm (stated in [HB96, Lemma 16] for k = 0, 1, but valid

for k ≥ 0 with little change in proof). It would be interesting to extend the above analysis to
the case m = 4 (with powers of logX expected to occur for certain F ’s); cf. [Bro09, §8.3.3’s
heuristic analysis of the Fermat cubic surface].
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Chapter 4

Using hypotheses on average

4.1 Using large-sieve hypotheses

Let m := 6 and F := x31 + · · ·+ x36. Recall, from Example 1.2.1, the conditional near-optimal
bound M2(X) ≪ϵ X

3+ϵ, and the underlying Hypothesis HW (practically amounting to
“automorphy and GRH”) for the standard Hasse–Weil L-functions L(s, Vc) associated to
smooth hyperplane sections Vc (see Example 3.2.10).

Since automorphy (in full generality)—and especially GRH—might not be proven for
some time, it is therefore natural to ask whether “Hypothesis HW” can be weakened. To
quote [Hoo86b, pp. 51–52]: “The removal of the dependence of our work on the Riemann
hypothesis is an obvious desideratum. Some weakening of the hypothesis is certainly possible
either by substituting some form of zero density requirement or by insisting merely that the
zeros of the Hasse-Weil L-functions be to the left of some vertical line lying to the right
of the critical line σ = 2. Yet is has not seemed worthwhile to explore such developments
here because the principles of the method would be obscured and because we cannot predict
the precise form of the first serviceable alternative to the Riemann hypothesis that might
subsequently be established.” (Regarding the question of automorphy, see Appendix A for
more details in the specific setting of L(s, Vc)’s above.)

In fact, by [Wan21g], it suffices to assume automorphy, along with a “density hypothesis for
zeros of height ⪅ 1”—an upper-bound statement on certain exceptional counts N(σ,F , T ) :=
#{π ∈ F : L(s, π) has a zero in [σ, 1] × [−T, T ]}—of the form (cf. [Wan21g, §6’s density
hypothesis, with l(σ) := 2(1− σ) + ϵ])

N(σ,F , T )≪ϵ T
O(1)|F|2(1−σ)+ϵ, uniformly over T, |F| ≥ 1 and σ ∈ [1/2, 1] (4.1)

(optimal, up to ϵ, among positive linear-in-σ exponents in the |F|-aspect; but “arbitrarily
polynomially poor” in the T -aspect). In general, (4.1) is morally provable under an “optimal”
large sieve inequality over F , i.e. “approximate ℓ2 orthogonality” of the matrix R|I| → R|F|

defined by n 7→ (λπ(n))π∈F—but currently a “Lindelöf on average” hypothesis over F also
plays a role in rigorous proof [Wan21b]. For instance, (4.1) is “close” to known for the
Bombieri–Vinogradov family {χ mod q : q ≤ Q}.

Yet eventually, I realized that a large sieve by itself—if true—would suffice for the original
goal of “recovering” the main results of [Hoo86b,Hoo97,HB98]. See [Wan21c] for details. Let
us roughly compare the argument to that of Hooley and Heath-Brown.

32



Outline of conditional M2(X)≪ϵ X
3+ϵ proofs. Let Y := X3/2 and Z := X1/2+ϵ0 (as in Defini-

tion 3.1.4). For a suitable weight w, it suffices to bound the expression (3.3). The contribution
to (3.3) from the locus F∨(c) = 0 can be unconditionally bounded by Oϵ0(X

3+O(ϵ0)) (and in
fact, it captures the main terms of HLH; see Chapter 6), so we focus on the locus F∨(c) ̸= 0.
Given c ∈ Zm with F∨(c) ̸= 0, recall the Dirichlet series Φ(c, s) from Definition 3.1.3, and
let Ψ1 := 1/L(s, Vc) and Ψ2 := ΦL, so that Φ = Ψ1Ψ2. Let a

′
c(n) := [ns]Ψ2 denote the nth

coefficient of the “error” Ψ2. Then the following hold (and can be proven using Example 3.2.10
and Proposition 3.3.3):

[B1’] For positive N ≤ Z3, the first moment
∑′

c≪Z

∑
n≍N |a′c(n)| is Oϵ(Z

m+ϵN1/2).

(To first order, this follows from [Hoo86b, pp. 78–79, analysis of Q(m; k2)], or alterna-
tively from [HB98, Lemma 5.2].)

[B2’] For positive N ≤ Z3, the second moment
∑′

c≪Z(
∑

n≍N |a′c(n)|)2 is Oϵ(Z
m+ϵN).

(This follows directly from [Wan21c, §2.4, Proposition 2.16]. This is a surprisingly
delicate point; see Remark 4.1.3 below.)

The arguments in [Hoo86b,Hoo97] and [HB98] can then loosely be interpreted as

(H1) using partial summation over n ≍ N ≪ Y to “factor out” K̃ := n−(m−1)/2Ĩc(n) from∑
n S̃K̃ (though in fact, partial summation is more like a certain “weighted decoupling”

over n), and then bounding the K̃-contribution in ℓ∞({n ≍ N});

(H2) expanding S̃ = S̃c = µc ∗ a′c using Φ = Ψ1Ψ2;

(H3) using GRH to bound the Ψ1-contribution in ℓ∞({c≪ Z}); and

(H4) using [B1’] afterwards, to bound the Ψ2-contribution in ℓ1({c≪ Z}).

Routine dyadic bookkeeping then bounds (3.3) by Oϵ0(X
3+O(ϵ0)), under Hypothesis HW. But

in fact, by [Wan21c], one can replace Hypothesis HW with a clean “elementary GRH on
average in ℓ2” statement, which can in turn be reduced to an “optimal” large sieve inequality
for the L-function family c 7→ L(s, Vc).

Remark 4.1.1. In the aforementioned dyadic bookkeeping, each dyadic range of moduli n
contributes roughly equally to the final bound Oϵ0(X

3+O(ϵ0)). Thus in Chapter 8 we will need
new integral bounds that decay, as n → 0, fairly uniformly over c. We will develop these
(and other estimates) in Chapter 7.

Remark 4.1.2. Roughly speaking, [Wan21c] uses partial summation specifically to deduce, for
a suitable probability measure ν = νN supported on [N, 2N ], that∣∣∣∣∣∣

∑
n∈[N,2N)

S̃(n)K̃(n)

∣∣∣∣∣∣≪
(

sup
n∈[N,2N ]

(
|K̃(n)|, N · |∂nK̃(n)|

))∫
x∈[N,2N ]

dν(x) |B([N, x))|,

where B(J) :=
∑

n∈J S̃(n) for intervals J . The actual argument is subtler, but it builds on
this idea. The point is that the large sieve only accepts uniform vectors; yet our “initially
given” vectors (in the delta method) are only approximately uniform over c, due to variation

in the archimedean component K̃, and in the error factor a′.
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Remark 4.1.3. What is [B2’] really saying? Say n is good if n ⊥ F∨(c), and purely bad if n |
F∨(c)∞; then see Table 4.1 below for a breakdown of [B2’]. (Note that Ec≪Z [sq(c)

1/2]≪ϵ Z
ϵ;

this is surprisingly delicate [Wan21c, Remark 2.17].)

Table 4.1: Types of contributions to
∑′

c≪Z(
∑

n≍N |a′c(n)|)2 in [B2’]

If n is (frequency) then a′c(n) is Oϵ(n
ϵ) · ? contributing ≪ (up to ϵ)

good, sq.-free (common) n−1/2 Zm(N ·N−1/2)2 = ZmN
good, sq.-full (rare) 1 Zm(N1/2 · 1)2 = ZmN

purely bad (very rare) n1/2
∏

j∈[m] sq(cj)
1/4 Zm(1 ·N1/2)2 = ZmN

arbitrary (factor mixture) mixture mixture

Looking ahead to Chapters 7–8, the first two rows (“sources of ϵ”) in Table 4.1 will inspire
a better approximation of Φ, while the third source (from bad n) will present a tougher
challenge (hence the “B” in [B1’]–[B2’]).

Let us now state [Wan21c]’s hypotheses more precisely. We first state a hypothesis that
can morally be thought of either as an elementary GRH-on-average statement (in a certain
range of parameters), or as an elementary manifestation of a zero-density hypothesis. Let Ψ1

be an approximation of Φ, in the sense of Definition 3.2.9.

Definition 4.1.4. The second-moment hypothesis for Ψ1 refers to the statement that for
all (Z, β) ∈ R2

>0, for all (positive reals) Y ≤ Z3, for all (positive reals) N ≤ βY , and for all
(real) intervals I ⊆ [N/2, 2N ], we have

∑′

c∈[−Z,Z]m

∣∣∣∣∣∑
n∈I

bc(n)

∣∣∣∣∣
2

≪β,ϵ Z
ϵmax(Zm, Y ) ·N (uniformly over Z, Y,N, I),

where we restrict the c-sum to {c ∈ Zm : F∨(c) ̸= 0}. (Here Zm ≫ Y , since m ≥ 3. But we
write max(Zm, Y ) in connection with the large sieve to be discussed soon.)

Remark 4.1.5 (Counting, or “density”, interpretation). Since m ≥ 4, the family F ≈ [−Z,Z]m
is in fact strictly larger than the range of moduli, Y . Given N, I in Definition 4.1.4, we
tolerate roughly |F|/N2σ−1 contributions of size Nσ−1/2. In particular, we are OK with
roughly |F|/N “extremely exceptional” c’s with |

∑
n∈I bc(n)| ≫ N matching the “heuristic

trivial bound”.1 Contrast with “almost covering” problems (about e.g. small primes modulo
c), where—in analogy with the “Sarnak–Xue density philosophy”—an “expander property”
(e.g. a sufficiently strong prime number theorem) is often needed near σ = 1.

Here bc(n) “morally contains” a Möbius factor µ(n). But at least in favorable situations,
the second-moment hypothesis for the Dirichlet series Ψ1 =

∑
n≥1 bc(n)n

−s can be reduced
to a large-sieve hypothesis involving the family of “friendlier” (“Möbius-free”) Dirichlet
coefficient vectors (ac(n))n≥1.

1In the full generality of Definition 3.2.9, we cannot always “actually trivially bound” |
∑

n∈I bc(n)| for
approximations Ψ1 of Φ.
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Definition 4.1.6. Call Ψ1 standard if bc(n), ac(n)≪ϵ n
ϵ holds uniformly over c, n.

Example 4.1.7. Say Ψ1 is defined as in Example 3.2.10. Then Ψ1 is standard.

We now come to our “main” hypothesis: a large sieve in certain ranges.

Definition 4.1.8. If Ψ1 is standard, then let γ := 1n=rad(n) · a, or let γ := b; if Ψ1 is
non-standard, then let γ := b. We define the large-sieve hypothesis for γ to be the statement
that for all (Z, β) ∈ R2

>0, and for all (positive reals) Y ≤ Z3, we have

∑′

c∈[−Z,Z]m

∣∣∣∣∣ ∑
n≤2βY

vn · γc(n)

∣∣∣∣∣
2

≪β,ϵ Z
ϵmax(Zm, Y ) ·

∑
n≤2βY

|vn|2 for all v ∈ R⌊2βY ⌋,

uniformly over Z, Y . (Here Zm ≫ Y , since m ≥ 3. But we write max(Zm, Y ) to avoid
potential confusion with large sieves in other ranges of parameters.)

Remark 4.1.9. The large-sieve hypothesis for γ := a (though excluded from Definition 4.1.8 for
expository convenience) would directly imply that for γ := 1n=rad(n) · a. The factor 1n=rad(n)

is simply “restriction to square-free moduli n”.

Remark 4.1.10. For concreteness, say Ψ1 is defined as in Example 3.2.10. Say γ := 1n=rad(n) ·a.
Then c 7→ (γc(n))n≥1 is genuinely a family of Hasse–Weil coefficients, up to 1n=rad(n). For
Ψ1, γ, it remains open to prove the associated large sieve (or satisfactory partial results
towards it, if true). The difficulty (of the problem) seems unclear. One approach might be to
dualize and try to adapt [Lou14], at least over Z[ζ3]. Alternatively, one could try elementary
geometric and analytic arguments.

For a discussion of large sieves in general (and what one can or cannot expect to be true),
we refer the reader to [IK04, §7], [Dja12, §1], and [DR21, §1.4]. From the point of view of
geometric families, a nice example of a large sieve is [HB95]’s quadratic-character large sieve
(“optimal” if one restricts to square-free moduli, as is OK for most applications), applied
in [PP97] to quadratic twist families of elliptic curves. (Interestingly, the conductors in the
latter setting grow significantly faster than those in the former, but [HB95] applies equally
well to the two settings, as far as the large sieve is concerned.)

Optimistically, one might hope that a “natural” geometric family—especially one with
“big monodromy” (in some sense)—would have a good chance of satisfying an “optimal” large
sieve. For a discussion of the (closely related) “expected random matrix symmetry type” of
our present Vc families (with 2 | m), we refer the reader to Chapter 8.

Remark 4.1.11. The philosophy behind [Wan21c] should also apply to other problems; see
§9.1 for some potential examples in the spirit of the problems discussed so far. In geometric
settings in particular, one might also wonder about the structure of the conjecturally relevant
automorphic objects; Appendix A discusses a basic preliminary question in this direction.

4.2 Using average quadratic hypotheses

Throughout §4.2, let n := 3, and let Qh :=
∑

i∈[n] hiy
2
i ∈ Z[y] for each h ∈ Zn. Also let

F0(y) := y31 + · · ·+ y33 and F (x) := x31 + · · ·+ x36.
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4.2.1 A uniform conjecture on ternary quadratic equations

Conjecture 4.2.1. Uniformly over reals X,H ≥ 1 and pairs (h, k) ∈ Z3 × Z with ∥h∥ ∈
[H, 2H] and −h1h2h3k /∈ {0} ∪ (Q×)2, we have

#{y ∈ Z3 ∩ [−X,X]3 : Qh(y) = k} ≪ϵ (XH)ϵ ·
(

X

|h1h2h3|1/3
+
(
X2H

)1/4)
.

Remark 4.2.2. In the positive-definite case h ∈ Z3
>0, [Gol96, before the statements of the main

results] mentions a similar “quite plausible” conjecture asserting the O(k1/4)-boundedness of
the kth coefficient of the cusp form of weight 3/2 corresponding to Qh, uniformly over h.

Remark 4.2.3. Using [DFI93,HB96]’s delta method along the lines of [BKS19], one can likely
give a heuristic argument for Conjecture 4.2.1, assuming “generic square-root cancellation”
over the modulus q (for “generic” c’s). Some details, including the analysis of the oscillatory
integral for small q’s, would likely require some care to flesh out (cf. [BKS19]), because k ≠ 0.

(The “homogeneous case” k = 0 would be easier to analyze—at least under standard
hypotheses—but we have excluded it from Conjecture 4.2.1 for simplicity.)

Remark 4.2.4. The X/|h1h2h3|1/3 comes from a loose real-density bound: note that

(2ϵ)−1 vol

y ∈
∏
i∈[3]

[Xi, 2Xi] : Qh(y) ∈ [k − ϵ, k + ϵ]


≪ X1X2X3

maxi∈[3](|hi|X2
i )
≤ X1X2X3∏

i∈[3](|hi|X2
i )

1/3
=

(X1X2X3)
1/3

|h1h2h3|1/3
≪ X

|h1h2h3|1/3

holds uniformly over (X, k, ϵ) ∈ (0, X]3 × R × (0, 1], say. (For “lopsided” h, the bound
X/|h1h2h3|1/3 can likely be improved at the cost of cleanliness.)

Remark 4.2.5. Fix (h, k) ∈ Z3 × Z with h1 + h2 + h3 = 0 and k = −3F0(h). Then
k = −9h1h2h3, so −h1h2h3k = (3h1h2h3)

2 is a square. And in fact, here Qh(y) = k does
have many “trivial” solutions y ∈ Z3, including (t+ 3h2, t− 3h1, t) for each t ∈ Z. So in the
range Xδ ≤ ∥h∥ ≤ δX, for instance, Qh(y) = k would have ≫ X solutions y ∈ [−X,X]3 as
X →∞.

Thus in Conjecture 4.2.1, we need some nontrivial requirement on (h, k), even if h1h2h3 ̸= 0.
Conjecture 4.2.1’s assumption “−h1h2h3k /∈ {0} ∪ (Q×)2” is thus quite natural.

4.2.2 A cubic application via differencing

To bound NF (X), we will first “dilute and fiber NF (X) into ternary affine quadrics” using
multidimensional van der Corput differencing (inspired by [MV19, Lemma 3.3], which
similarly reduced a quartic problem—in some ranges—to a problem about mixed cubic-
quartic exponential sums) and then apply Conjecture 4.2.1 to bound most of the resulting
fibers.

Remark 4.2.6. The basic idea of studying “quadratic fibers” of cubic Diophantine problems
also appears in [Gol96,Woo13], for instance, and dates back at least to [Lin43]’s proof that
G(3) ≤ 7. (For more details on G(3) and its history, see [VW02].)
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Since Conjecture 4.2.1 does not apply to all (h, k) ∈ Z3×Z, we will also need the following
conjecture:

Conjecture 4.2.7. Uniformly over reals H > 0, we have

#{(h, z) ∈ (Z3 \ {0})× Z : ∥h∥ ≤ H and 3h1h2h3(h
3
1 + h32 + h33) = z2} ≪ϵ H

2+ϵ.

Remark 4.2.8. For fixed h1, h2 with h1h2(h
3
1 + h32) ̸= 0, the equation z2 = 3h1h2h3F0(h) in

h3, z cuts out a genus 1 affine plane curve, which contains the points (0, 0) and (−h1 −
h2,±3h1h2h3)—and thus defines an elliptic (in fact, a Mordell) curve, namely

y2 = 3h1h2
(
(h31 + h32)x

3 + 1
)
, where (x, y) := (1/h3, z/h

2
3).

In particular, we may view {z2 = 3h1h2h3F0(h)} as an “elliptic fibration” over h1, h2.
Conjecture 4.2.7 would thus follow from a certain standard hypothesis on the rank growth
of elliptic curves over Q (which would itself follow from BSD and GRH, by [IK04, Proposi-
tion 5.21]); cf. [BB21, discussion after Theorem 1.1].

What can be said unconditionally towards Conjecture 4.2.7? (The fact that we are
interested only in certain integral points, rather than all rational points, may help.)

Proposition 4.2.9. Assume Conjectures 4.2.1 and 4.2.7. Then NF (X) ≪ϵ X
45/13+ϵ as

X →∞. (Here 45/13 = 3.4615 . . . < 7/2.)

Proof. Fix a small absolute constant c > 0 to be specified later. Then fix a nonzero
nonnegative weight ν ∈ C∞

c (Rn) supported on [1, 1 + c]n. (Recall that n := 3.)
Now let w(y, z) := ν(y)ν(−z). Then by Hölder and dyadic decomposition, it certainly

suffices to show that NF,w(X)≪ϵ,ν X
45/13+ϵ. But

NF,w(X) =
∑
a∈Z

NFa,ν(X)2.

Now fix a van der Corput differencing set H ⊆ Zn ∩ [0, X]n, let νX := ν ◦ X−1 and
wX := w ◦X−1 for convenience, and “dilute” NFa,ν(X) by H to get

NFa,ν(X) :=
∑

x0∈Zn

νX(x0)1F0(x0)=a =
∑

x0∈Zn

|H|−1
∑
h∈H

νX(x)1F0(x)=a,

where x := x0 + h. Then by Cauchy over x0 ≪ X, it follows uniformly over a ∈ Z that

NFa,ν(X)2 ≪ Xn
∑

x0∈Zn

|H|−2
∑

h1,h2∈H

νX(x2)1F0(x2)=a · νX(x1)1F0(x1)=a

= Xn|H|−2
∑

x1,x2∈Zn

D(x2 − x1) · νX(x2)1F0(x2)=a · νX(x1)1F0(x1)=a

= Xn|H|−2
∑
h∈Zn

D(h)
∑

x1∈Zn

νX,h(x1)1F0(x1+h)=F0(x1)=a,
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where D(h) := #{(h1,h2) ∈ H2 : h = h2 − h1} ≤ #H and νX,h(y) := νX(y + h)νX(y).
Summing over a ∈ Z, and letting y := x1, leads to the bound

NF,w(X)≪ Xn|H|−2
∑
h∈Zn

D(h)
∑
y∈Zn

νX,h(y)1F0(y+h)=F0(y)

≪ Xn|H|−1
∑

h∈H−H

∑
y∈Zn

1y+h,y∈[X,(1+c)X]n1Fh(y)=0,

where Fh(y) := F0(y + h)− F0(y).
Inspired by [MV19], we now let K := cXθ for an exponent θ ∈ (0, 1] to be specified, and

let H := {d ∈ [0, cX] × [0, cK]n−1 : 6 | d}. The key point is that if (h,y) ∈ (H − H) ×
[X, (1 + c)X]n and |h1| ≥ K, then |h2|, |h3| ≤ cK ≤ c|h1|, so the mean value theorem for
y 7→ y3 implies

|Fh(y)| ≥ |h1| · (3− oc→0(1))X
2 − (|h2|+ |h3|) · (3 + oc→0(1))X

2 ≥ |h1|X2

(provided we chose c to be sufficiently small), whence Fh(y) ̸= 0. Thus

NF,w(X)≪ Xn|H|−1
∑
h∈Zn

1h∈[−K,K]n16|h
∑
y∈Zn

1y∈[X,(1+c)X]n1Fh(y)=0.

For each h,y contributing to the sum above, let h′ := h/6 ∈ Zn ∩ [−K/6, K/6]n and
y′ := y + 3h′ ∈ Zn ∩ [(1− c)X, (1 + 2c)X]n; then

Fh(y) =
∑
i∈[n]

[(yi + hi)
3 − y3i ] =

∑
i∈[n]

[3hi(yi + hi/2)
2 + h3i /4] = 18Qh′(y′) + 54F0(h

′).

Let kh′ := −3F0(h
′); then by Conjectures 4.2.7 and 4.2.1, and the “trivial bound”

#{y′ ∈ Zn ∩ [−2X, 2X]n : Qh′(y′) = kh′}

≪ Xn1h′=0 +Xn−1

(∑
π∈S3

1h′
π(1)

=h′
π(2)

=0 +
∑
π∈S3

1h′
π(1)

=h′
π(2)

+h′
π(3)

=0

)
+Oϵ(X

n−2+ϵ)

(proven later, soon below), we conclude that NF,w(X) is

≪c,ϵ
Xn(XK)ϵ

1 +XKn−1

(
Xn +KXn−1 +K2Xn−2 +

∑′

h′≪K

(
X

|h′1h′2h′3|1/3
+
(
X2K

)1/4))

≪c,ϵ
Xn+2ϵ

1 +XKn−1

(
Xn +KXn−1 +K2Xn−2 +K2n/3X +Kn

(
X2K

)1/4)
,

where the sum over h′ is restricted to {−h′1h′2h′3kh′ /∈ {0}∪(Q×)2}. Finally, recall that n := 3,
and set θ := (4/13) · (5/2) = 10/13 to obtain the desired bound NF,w(X)≪ϵ X

45/13+ϵ.

Loose ends. To derive the “trivial bound” for #{y′ ≪ X : Qh′(y′) = kh′}, note that
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(1) uniformly over (a, b, t) ∈ (Z \ {0})2 × Z, we have

#{(u, v) ∈ [−2X, 2X]2 : au2 + bv2 = t} ≪ϵ X · 1t=0 + (|ab|X)ϵ,

by using τ(|t|) · 1t̸=0 ≪ϵ |t|ϵ if −ab is a square, and by working in Q(
√
−ab) otherwise

(noting that pe has at most (e + 1)2 = τ(pe)2 ideal divisors in Q(
√
−ab), and that if

−ab > 0 then the fundamental unit ε is ≥ min(1 +
√
2, 1+

√
5

2
));

(2) if h′1h
′
2h

′
3 ̸= 0, then kh′ − h′3(y′3)2 is nonzero for all but at most O(1) integers y′3;

(3) if π ∈ S3 and h′π(1) = 0, but h′π(2)h
′
π(3)(h

′
π(2) + h′π(3)) ̸= 0, then h′π(2)h

′
π(3)kh′ ̸= 0; and

(4) if π ∈ S3 and h′π(1) = h′π(2)(h
′
π(2) + h′π(3)) = 0, but h′ ̸= 0, then h′π(3) ̸= 0, whence for

each y′π(1), y
′
π(2) there are ≤ O(1) integers y′π(3) with Qh′(y′) = kh′ .

The desired “trivial bound” follows upon combining (1)–(4).

4.2.3 Commentary on the proof of the proposition

Remark 4.2.10. One can certainly relax the assumptions of Proposition 4.2.9. For example, an
“ℓ1-average” version of Conjecture 4.2.1 (over h≪ K) would suffice in place of Conjecture 4.2.1.
Also, we could relax the exponent in Conjecture 4.2.7 from 2 + ϵ to 2.6 + ϵ.

In a more qualitative direction, note that y 7→ y3 is increasing. So if h ̸= 0, and h ≥ 0
(or h ≤ 0), then Fh(y) > 0 (resp. Fh(y) < 0) holds for all y ∈ Rn. Thus we only need
Conjecture 4.2.1 in the indefinite case (i.e. when h1, h2, h3 do not all have the same sign)—and
in fact, we may further assume that max(h) ≍ |min(h)|.
Remark 4.2.11. At the beginning, we localized to x ∈ [X, (1 + c)X]. In fact, we could have
localized to |x−X| ≤ X/ logX or |x−X| ≤ X1−ϵ0 , say, but it is unclear if this would help.

Remark 4.2.12. For approximate lattices H, the estimate D(h)≪ #H is close to the truth.

Remark 4.2.13. The “lopsided” choice of H in Proposition 4.2.9 saves a factor of roughly
K/X over what we would have gotten from a more “uniform” choice of H. This is essentially
the observation behind the “averaged van der Corput differencing” in [MV19, §3.2]—which
perhaps originated in work of Heath-Brown [HB07, §4]. The point is, in order for something
like h1x

2
1 + h2x

2
2 + h3x

2
3 to vanish (or be small at all), two of the hix

2
i must be comparable.

Above we only used a real (archimedean) version of this observation; is there a useful way to
also introduce divisibility (non-archimedean) conditions on H?

And is there a more conceptual justification for our choice of H above? Choosing H still
seems to be an art. What is the “best” choice of H? It may be worth trying H ≈ [cX]2× [cK],
for instance—or more generally, H ≈ [cX]× [cK2]× [cK3] with X ≫ K2 ≫ K3.

Remark 4.2.14. Instead of applying van der Corput differencing to NFa,ν(X) (once for each
a ∈ Z), we could have applied van der Corput differencing to T (θ)n = T (θ)3 (once for each
θ ∈ R/Z), where T (θ) denotes a weighted cubic Weyl sum. (Recall that NF (X) is the sixth
moment of a certain cubic Weyl sum.) However, at least with the approach above, the end
results do not seem to differ.
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Remark 4.2.15. If one wanted to “amplify” the Hua problem (for n = 3) to some n ≥ 4—and
perhaps replace Proposition 4.2.9 with a question about n-variable quadratic forms (instead
of ternary ones)—one would need to “restrict to minor arcs” (though the precise definition,
including the initial choice of Dirichlet covering of R/Z, might require a little care).

Remark 4.2.16. Recall that Hua proved NF (X)≪ϵ X
7/2+ϵ by interpolating between (uncon-

ditional) results in L4 and Lp for some p ∈ [8,∞]. The simplest such “ingredients” might be
Hua’s lemma in L4 and L8—which can be proven by applying Weyl differencing once and
twice, respectively. There are more elaborate arguments for the fourth and eight moments
(roughly due to geometry and smooth numbers, respectively) that remove Hua’s ϵ’s, or even
give log-power savings for NF (X) (see [Vau20, around Theorem 1.2] for details), but here we
focus on classical differencing.

Thus in some sense, Hua used Weyl differencing “strictly between 1 and 2 times” for the
sixth moment. And Proposition 4.2.9 can be viewed as an attempt to “perturb Hua” using a
single (more general) van der Corput differencing directly applied to the sixth moment.

4.2.4 Final questions and remarks

Remark 4.2.17. [Mah36] used the identity (9u4)3 + (3uv3 − 9u4)3 + (v4 − 9u3v)3 = v12 to
show that r3(N) ≫ N1/12 for N = v12 > 0. Although “localizing” to x ≈ X would rule
out such solutions (one would need 9u4 ≈ 3uv3 − 9u4, i.e. v3 ≈ 6u3, but then v4 − 9u3v ≈
(6u3 − 9u3)v < 0—a contradiction), this example suggests that some bases or fibrations are
more biased than others. How biased is the “differenced” basis used in Proposition 4.2.9?

Remark 4.2.18. Suppose one applied the delta method directly on r3(N) to see what one
gets assuming the most optimistic square-root cancellation over the modulus q (but no
further cancellation over the dual variable c). If X ≍ N1/3, then one should expect roughly
r3(N)≪ϵ X

3s/4−3/2+ϵ = X3/4+ϵ, by extrapolating [HB98]’s work for s = 4, 6 to s = 3.
The “total heuristic bound”

∑
y≪X r3(F0(y))≪ϵ X

3.75+ϵ seems to arise naturally in other

exact2 “complete geometric exponential sum” approaches to bounding NF (X) as well:

(1) If one applies Deligne rather than GRH in [Hoo97,HB98], one gets NF (X)≪ϵ X
3.75+ϵ

(rigorously, in fact—but unfortunately, this is worse than the Hua bound).

(2) The delta method heuristic for Conjecture 4.2.1 has an error term of (X2H)1/4+ϵ,3

which for H ≍ X gives X3/4+ϵ for each h.

Is the X3/4+ϵ commonality a red herring? It might be interesting to see if there is a deeper
connection between the cubic hyperplane section Hasse–Weil L-functions of [Hoo86b,HB98]
on the one hand, and the various Kloosterman–Salié sums and modular forms associated to
quadratic problems arising from Weyl or van der Corput differencing on the other.

Remark 4.2.19. It may be interesting to try attacking other problems—including some of
those listed in §9.1—by differencing or fibering.

2i.e. “dilution-free” (no nontrivial van der Corput differencing), etc.
3the heuristic being uniform in k, though k = −3F0(h) is what is relevant to us
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Chapter 5

Biases in finite-field point counts

5.1 Introduction

The Weil conjectures imply in particular that point counts of smooth projective complete
intersections over finite fields satisfy a certain randomness heuristic of “square-root cancella-
tion” type. As [Hoo91, second paragraph after Theorem 2] notes, the same heuristic fails for
some singular complete intersections, and it would be nice to have a “satisfactory criterion”
to determine when, but “on the scanty evidence at present available, all we can say as yet
is that it seems as if there were only a minority of singular varieties for which the result of
the theorem cannot be improved.” Yet [Hoo91, Theorem 2] itself is silent on this issue (see
Remark 5.1.7 below), and the full truth is far from known in general. Let us now summarize
positive results of [Wan22] in this direction.

Given a base field k, an integer m ≥ 3, and a homogeneous polynomial F ∈ k[x] =
k[x1, . . . , xm], let V denote VPm−1(F ), and let Vc denote the intersection VPm−1(F, c · x)
for c ∈ km (a hyperplane section of V if c ≠ 0). (We will repeatedly use this setup with
k,m, F, V, Vc; call it theMain Setup for convenience.) Our main general result, Theorem 5.1.14
below, shows that if k is finite, V is smooth, and degF ≥ 3, then under mild conditions, the
Vc’s satisfy “square-root cancellation” for all c away from an explicit locus of codimension
two. This result does not extend to degF = 2 in general (see Proposition 5.1.21), but its
truth for degF = 3 is significant for Chapters 7–8.

Theorem 5.1.14 directly leads to general progress on Problem 5.1.2 below. In special
cases, one can do better. The quadratic case is more or less understood (in odd characteristic,
at the very least), so we focus on cubics. Corollary 5.1.31 shows that if k is finite, V is
smooth, degF = 3, and m ∈ {4, 6}, then Vc fails “square-root cancellation” if and only if
(Vc)k contains a certain kind of subvariety of dimension (m− 2)/2. This is at least morally
significant for Chapter 6 on special subvarieties in Manin-type conjectures. This also leads to
the following (vague) question:

Question 5.1.1. To what extent do special subvarieties in Manin’s conjectures correlate
with special subvarieties in the sense of the present chapter? For example, it would be
interesting to determine whether the special quadratic locus x1 + x2 + x3 = x4 + x5 + x6 =
(x21 + x22 + x23) − (x24 + x25 + x26) = 0 on the 6-variable quartic x41 + x42 + x43 = x44 + x45 + x46
(which I learned from a talk of Wooley; see [Woo19]) remains special for hyperplane sections
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of the quartic over finite fields.

Problem 5.1.2. Fix G ∈ Z[x], homogeneous of degree d ≥ 2 in m ≥ 3 variables, with
nonzero discriminant. Let Md,m := 72(3 + 2d)m. Given a prime p and integer r ≥ 1, let
q := pr. Given c ∈ Fmq , let Ec(q) := #VPm−1(G, c · x)(Fq)−#Pm−3(Fq). Let

NG,d,m(q) := #{c ∈ Fmq \ {0} : |Ec(q)| > Md,m · q(m−3)/2}.

As G, d,m vary, estimate the exponent σG,d,m := lim supp→∞ supr→∞ logq(NG,d,m(q)).

Remark 5.1.3. Problem 5.1.2 is close in spirit to [Lin20, Theorem 1.3 and the line after],
who studies a different aspect (with q,m fixed and d→∞), works with a different family (a
universal family of hypersurfaces), and works with a related cohomological problem instead
of concrete point counts.

Remark 5.1.4. Morally, σG,d,m is the “numerical dimension” of the locus of c’s for which
square-root cancellation fails. Most other natural measures of failure (e.g. those suggested
by Proposition 5.1.9) are harsher, i.e. ≥ σG,d,m. In any case, the Weil conjectures (plus
Lang–Weil) give the bound σG,d,m ≤ m− 1 (as does [Hoo91, Theorem 2]), which we improve
to σG,d,m ≤ m− 2 for d ≥ 3 in general (see Remark 5.1.15), and to σG,d,m ≤ m− 3 in many
cases with (m, d) = (6, 3) (see e.g. Example 5.1.32, where m ∈ {4, 6} and σF,3,m = m/2).
Based on this, it would be reasonable to conjecture that σG,d,m ≤ m − 3, or perhaps even
more, holds when d ≥ 3 and m ≥ 6 (if one believes that “randomness” should increase with
d,m).

We now introduce some relevant conventions and notions.

Definition 5.1.5. Let k be a base field. A k-scheme is a scheme equipped with a morphism
to Spec k. A variety over k (or k-variety for short) is a separated k-scheme of finite type (not
necessarily reduced or irreducible). In the context of projective varieties, and especially their
singular loci, let dim(∅) := −1 and P−1

k := ∅. If X is a projective k-variety and k is finite, let
E(X) := #X(k)−#PdimX(k). (The base field k of X is essential to this definition.)

For a k-variety X of pure dimension d ≥ 0, let Xsing denote the singular subscheme of X,
i.e. the closed subscheme of X cut out by the dth Fitting ideal of the cotangent sheaf ΩX/k

(or informally, “by the Jacobian criterion”), following [Sta22, Tag 0C3H]. (Most important
to us is Xsing(k), the set of singular k-points of X.) For a scheme Y , we let |Y | denote the
underlying topological space; thus, for instance, |Xsing| denotes a topological space, while
|Xsing(k)| = #Xsing(k) denotes an integer.

Our main concern is the notion of error-goodness (or |E|-goodness for short), which we
now define alongside some related notions (related by Proposition 5.1.9).

Definition 5.1.6. Let k denote an arbitrary finite field, and X a projective k-variety.

(1) Given f ∈ {|E|,+E,−E}, say X is f -good (with constant C) if there exists C ∈ R>0

such that for all finite extensions k′/k, we have f(Xk′) ≤ C|k′|(dimX)/2. Say X is f -bad
if it is not f -good.

(2) Given a property blah in (1), say X is potentially (resp. stably) blah if Xk′ is blah for
some (resp. for every) finite extension k′/k.
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Remark 5.1.7. Fix a projective complete intersection Y/k. Then [Hoo91, Theorem 2] gives
|E(Yk′)| ≤ O(|k′|(1+dim(Ysing)+dimY )/2) as [k′ : k] → ∞. Like the Weil conjectures, this only
proves that Y is |E|-good if dim(Ysing) = −1, i.e. Y is smooth.

For reference, we recall a useful principle of Zak:

Theorem 5.1.8 (See e.g. [Hoo91, Katz’s Appendix, Theorem 2]). Let k,m, F, V, Vc be as in
the Main Setup. If V is smooth, then dim((Vc)sing) ≤ 0 for all c ∈ km \ {0}.

We now state a useful amplification-type result. The proof (see [Wan22, §2]) uses general
foundational results due to Katz and others (see especially Theorem 5.2.8).

Proposition 5.1.9. Let k be a finite field. Let X be a projective k-variety of the form
V (F1, . . . , Fr) ⊆ Pnk , with n, r ≥ 1 and maxi∈[r] degFi ≤ d. Consider the following four
conditions:

(1) X is |E|-good with constant 18(3 + rd)n+12r;

(2) X is |E|-good;

(3) X is potentially |E|-good;

(4) X is potentially (−1)1+dimXE-good;

In general, (1)–(2) are equivalent, (2) implies (3), and (3) implies (4). If codimX = r and
dim(Xsing) ≤ 0, then (1)–(4) are equivalent.

Remark 5.1.10. In particular, a projective complete intersection Y/k with dim(Ysing) ≤ 0 is
|E|-good if and only if it is potentially |E|-good. It would be nice to have this more generally.

To state our main general result, Theorem 5.1.14, we need two definitions.

Definition 5.1.11. For a variety of pure dimension n− 1 over K = K, an A1 singularity is
a point at which the completed local ring is ∼= K[[z1, . . . , zn]]/(z

2
1 + · · ·+ z2n).

Remark 5.1.12. In characteristic p ̸= 2, the following notions coincide: A1 singularity,
non-degenerate double point, and ordinary double point. (See e.g. [PS20, §4].)

Definition 5.1.13. Given integers d ≥ 2 and m ≥ 3, let disc(P,a) be a discriminant
polynomial associated to the “universal” intersection V (P,a · x) ⊆ Pm−1 defined by the
“universal” homogeneous polynomials P (x),a ·x of respective degrees d, 1 in x = (x1, . . . , xm).
(See e.g. [Ter18, §1.1], or [Wan22, Appendix A], for details.)

Theorem 5.1.14. In the Main Setup with k,m, F, V, Vc, suppose V is smooth, d := degF ≥ 3,
and k is finite of characteristic p ≠ 2. Let c ∈ km \ {0}, and suppose Vc is |E|-bad (see
Definition 5.1.6 and Proposition 5.1.9). Then the following hold:

(1) Either Vc × k has ≥ 2 singularities, or it has a non-A1 singularity.

(2) If p ∤ d(d− 1), then c is a singular zero of the polynomial disc(F,−).
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Remark 5.1.15. The significance of (2) comes from its codimension-two nature; when combined
with Proposition 5.1.9 and Lang–Weil, it gives σG,d,m ≤ m − 2 in Problem 5.1.2 for d ≥
3. Though (2) is easier to use in certain applications, (1) can also be useful in view of
[PS20, Theorem 1.1].

Remark 5.1.16 (Sawin). One could perhaps prove a less explicit version of Theorem 5.1.14(2)
using the perversity-based strategy of [GS21, proof of Lemma 3.1].

Remark 5.1.17. Theorem 5.1.14(2) may have an analog for the universal family of hypersurfaces
of a given degree ≥ 3 and dimension ≥ 0. We have not checked.

The proof of Theorem 5.1.14 (see [Wan22, §3]) mainly combines results on discriminants,
duality, and ℓ-adic cohomology (especially [Lin20, Theorem 1.2]). When (m, d) = (6, 3), one
can replace the ingredient [Lin20, Theorem 1.2] with the following proposition, proven later
(after Lemma 5.2.10) using some geometry (going back to Clemens–Griffiths) specific to cubic
threefolds.

Proposition 5.1.18. Let X be a projective cubic threefold over a finite field k. Assume
that Xsing(k) = {x}, with x ∈ X(k) either nodal or mildly cuspidal (i.e. either of analytic
type z1z2 + z3z4 = 0 or z1z2 + z23 + z34 = 0; see e.g. [CML09, Corollary 3.2(i)–(ii)] and
[vdGK10, paragraph before Proposition 2.1] for the equivalence). Then x is defined over k,
and X is |E|-good.

Theorem 5.1.14 has the following corollary (proven in [Wan22, §4] by point counting),
which when 2 | m reproves a consequence of the Deligne–Katz equidistribution theorem. (The
case 2 ∤ m may or may not involve “exceptional monodromy”, which could complicate an
attempt to use Deligne–Katz.) It suggests that there may be a deeper connection between
monodromy, moments, and Problem 5.1.2.

Corollary 5.1.19. Let G, d,m,Ec(q) be as in Problem 5.1.2. If d,m ≥ 3, then as p→∞,
the following hold (with implied constants depending only on G):

(1) Ec∈Fm
p
[Ec(p) · 1p∤disc(G,c)] = p−1 · E(VPm−1(G)/Fp) + p−1 ·O(p(m−3)/2).

(2) Ec∈Fm
p
[Ec(p

2) · 1p∤disc(G,c)] = (1 +O(p−1/2)) · pm−3.

(3) Ec∈Fm
p
[Ec(p)

2 · 1p∤disc(G,c)] = (1 +O(p−1/2)) · pm−3.

The next result shows that the assumption d ≥ 3 in Theorem 5.1.14 is essential when
2 | m; take dim(X) = m− 3 ≡ 1 mod 2 and d = dim(X)− 1 to see why.

Definition 5.1.20. Let k be a base field. A cone is a projective cone over a projective
k-variety, with vertex a k-point. (Informally, an embedded projective k-variety is a cone if
and only if it is “missing a variable” after some k-linear change of coordinates. For algebraic
convenience, we will consider a hypersurface X ⊆ P1

k with #X(k) = #X(k) = 1 to be a
cone.) An iterated cone is obtained by taking cones one or more times.

Proposition 5.1.21 (Quadric dichotomy). Let X be a projective quadric of dimension ≥ 0
over a finite field k. Then X is stably |E|-bad if and only if Xk is an iterated cone over a
smooth projective quadric of dimension d ∈ [0, dim(X)− 1] with 2 | d.
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Remark 5.1.22. If 2 ∤ |k|, then the adverb “stably” can be removed, and the cone condition is
equivalent to “X is of the form V (Q) with 2 | rank(Q) ∈ [2, dim(X) + 1]”.

Proposition 5.1.21 is essentially classical. We will sketch a proof using the following
general fact:

Proposition 5.1.23 (Routine). Let k be a finite field. If C(Y ) is a cone over a projective
k-variety Y , then E(C(Y )) = |k| · E(Y ).

Proof. Proof by calculation (one could probably alternatively use cohomology somehow):
|C(Y )(k)| = 1 + |k| · |Y (k)| (“vertex + lines through vertex”) and likewise |PdimC(Y )| =
|C(PdimY )| = 1 + |k| · |PdimY |; now subtract.

Proof sketch for Proposition 5.1.21. The key ingredients are the following:

(1) If X is smooth of dimension d ≥ 0, then E(X) = 0 if 2 ∤ d, and E(X) = ±|k|d/2 if
2 | d. (One can prove this using the Weil conjectures. If 2 ∤ |k|, one can alternatively
diagonalize and then follow e.g. [Wei49].)

(2) If X is non-reduced, then E(X) = 0. On the other hand, a reduced projective k-quadric
(of dimension ≥ 0) is singular if and only if it is an iterated cone over a smooth projective
quadric (of dimension ≥ 0).

By (1)–(2) and Proposition 5.1.23, X is potentially |E|-good if and only if Xk is either
smooth or non-reduced, or an iterated cone over a smooth projective quadric of dimension
d ∈ [0, dim(X)− 1] with 2 ∤ d. The result follows from (2).

The following results show that Theorem 5.1.14 is far from the full truth in general.

Definition 5.1.24. A d-CI is a (projective) complete intersection of multi-degree d.

Definition 5.1.25. Let d ≥ 1 be an integer. Over K = K, a cubic d-scroll is an em-
bedded projective d-fold Σ ⊆ Pn, integral of degree 3, with dim(Span(Σ)) = d + 2. (See
Proposition 5.2.4 below, and its proof, for some background on cubic scrolls.)

Theorem 5.1.26. Let n ∈ {2, 4}. Let X be a (3)-CI in Pn over a finite field k. Suppose Xk

is not a cone over a cone. If n = 2, then X is |E|-bad if and only if Xk contains a line. Now
suppose n = 4, and consider the following four conditions:

(1) X is stably E-bad (see Definition 5.1.6 and Proposition 5.1.9);

(2) X is stably |E|-bad;

(3) Xk contains a plane or a singular cubic 2-scroll in P4
k
; and

(4) there exists a (2, 2)-CI of the form V (Q1, Q2) ⊆ P4
k
, with V (Q1)sing ∩ V (Q2)sing ̸= ∅,

such that Xk contains a nonempty open subscheme of V (Q1, Q2).

In general, (1)–(2) are equivalent, (2) implies (3), and (3)–(4) are equivalent. If dim(Xsing) ≤
0, then (1)–(4) are equivalent.
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Remark 5.1.27. The case when Xk is a cone over a cone can still be fully analyzed (using
Proposition 5.1.23), but it is less interesting than the opposite case.

Remark 5.1.28. The equivalence of (1)–(2) suggests that (stable) |E|-badness might be
explained by “excess” points from “special” subvarieties, which we have tried to pinpoint in
(3)–(4). Theorem 5.1.26 is close to a complete dichotomy. To “complete” it (for n = 4), one
would need to analyze the case dim(Xsing) ≥ 1, which might be tricky (see e.g. [Wan22, proof
of Lemma 5.5]).

Remark 5.1.29. Our methods can also be used to show that a projective cubic surface X/k is
stably |E|-bad if and only if Xk is either reducible, or a cone over a smooth cubic curve. We
omit this from Theorem 5.1.26 because it has a different flavor.

The proof of Theorem 5.1.26 (see [Wan22, §5]) uses (for n = 4) base change and some
situation-specific geometry, including some classification results over k (see e.g. Proposi-
tion 5.2.1 and Lemma 5.2.2 below). It would be interesting to find different proofs of
Theorem 5.1.26 that work directly over k, or that generalize naturally. Condition (4) in
Theorem 5.1.26 seems especially suggestive as to what one might try more generally. One
might also try using mixed Hodge theory, in the spirit of e.g. [Dim90,Klo22].

Remark 5.1.30. Originally we sought to prove Theorem 5.1.26 (for n = 4) using (an extension
of) [BSD67]’s “conic bundle” method; see §5.3 below (and specifically, Remark 5.3.16). This
approach inspired condition (4). But our present approach is overall more efficient in the
singular case.

Corollary 5.1.31. In the Main Setup, suppose F is a cubic form in m ∈ {4, 6} variables
over a finite field k, and V is smooth. Let c ∈ km \ {0}. Then Vc is |E|-bad if and only if
(Vc)k contains an (m− 2)/2-plane or a singular cubic 2-scroll in Pm−1

k
.

Proof. Combine Theorem 5.1.8, Proposition 5.1.9, and Theorem 5.1.26.

Example 5.1.32. Let m ∈ {4, 6} and F = (F1, . . . , Fm) ∈ (Z \ {0})m. Suppose F =
F1x

3
1 + · · · + Fmx

3
m, and assume the characteristic of k is sufficiently large in terms of F .

Then by [Wan22, Proposition B.3] (proven by a calculation—a singularity analysis—involving,
among other things, 3×3 Vandermonde determinants arising from diagonality), the phrase “or
a singular cubic 2-scroll” in Corollary 5.1.31 is unnecessary for F . Furthermore, the (m−2)/2-
planes on Vk are known to be cut out by systems of equations of the form “Fix

3
i + Fjx

3
j = 0

in pairs”. Thus a given Vc is |E|-bad if and only if “c3i /Fi = c3j/Fj in pairs”.

Our proof of [Wan22, Proposition B.3] makes use of the following technical fact (though
it would be nice to know how much the hypotheses can be weakened; cf. [Bri15]):

Proposition 5.1.33. Let X1, X2 be subvarieties of Pn of pure dimension d over K = K,
where d, n ≥ 1. Let X := X1 ∪X2. Assume the following hypotheses:

(1) dim(X1 ∩X2) = 0; and

(2) for each x ∈ X1 ∩X2, there exist a subvariety Y of Pn of pure dimension 2d, and an
open neighborhood U of x in Pn, such that X1 ∩ U and X2 ∩ U are Cohen–Macaulay,
Y ∩ U is smooth, and Y ∩ U ⊇ X ∩ U .
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Then Xsing ⊇ X1 ∩X2.

Proof. The statement is local, so we may assume X1 ∩ X2 is supported on a singleton
{x}. Now let Y, U be as in hypothesis (2); by shrinking U if necessary, we may assume
that U is affine and that X1, X2, Y are closed subschemes of U . Say U = SpecR, and let
I1, I2, J ⊆ R be the ideals defining X1, X2, Y , respectively. Then X1, X2 are Cohen–Macaulay,
Y is regular, and J ⊆ I1∩ I2. By [Spe10] and [Ser00, Proposition 11 in §IV.B.1, and Corollary
to Theorem 4 in §V.B.6], it follows that (I1/J)∩ (I2/J) = (I1/J) · (I2/J) in R/J (cf. [Dao22]).
So if f ∈ I1 ∩ I2, then f ≡ h mod I1I2 for some h ∈ J , whence Df ≡ Dh mod (I1, I2) for all
derivations D : R→ R. But ΩY/K is locally free of rank 2d ≥ d+ 1, so the dth Fitting ideal
of ΩY/K is 0. Thus VU(I1 ∩ I2)sing ⊇ VU(I1, I2), i.e. Xsing ⊇ X1 ∩X2.

Problem 5.1.2 and Corollary 5.1.31 motivate the following question:

Question 5.1.34. Given a smooth cubic hypersurface X ⊆ P5
C, let S ⊆ (P5

C)
∨ parameterize

hyperplane sections of X containing a singular cubic 2-scroll in P5
C. What is the best possible

upper bound on the dimension of the Zariski closure of S?

Remark 5.1.35. It is known that |S| = 1 for sufficiently general X containing a (not necessarily
singular) cubic 2-scroll; cf. especially [Has96, proof of Lemma 2.11, and the subsequent
dimension counting] and [HT10, Propositions 3.3 and 6.1]. And S may well be finite for
X = VP5(x31 + · · ·+ x36)/C, though our analysis in [Wan22, Appendix B] falls short of a proof
(due to interference from the planes on X).

5.2 Miscellaneous writeups

The proof of Theorem 5.1.26 (see [Wan22, §5]) begins with a classical “rationality”-type idea
(cf. [Dol16, §1]).

Proposition 5.2.1. Let X ⊆ Pn be a (3)-CI over a finite field k, where n ≥ 2. Assume
[0 : · · · : 0 : 1] ∈ Xsing. Then X = V (f2xn+1 + f3) for some fi ∈ k[x1, . . . , xn], homogeneous
of degree i, with (f2, f3) ̸= (0, 0). Furthermore, E(X) = |k| ·E(VPn−1(f2, f3))−E(VPn−1(f2))+
|k|n−1 · 1dimV (f2,f3)=dimV (f2).

Proof. The first part is clear. So there are two kinds of points [x] ∈ X(k): (i) those
with f2 ̸= 0 and xn+1 = −f3/f2, and (ii) those with f2 = 0 and f3 = 0. Therefore
|X(k)| = |(Pn−1 \ V (f2))(k)| + |C(VPn−1(f2, f3))(k)|. Proposition 5.1.23, and casework on
dimV (f2)− dimV (f2, f3) ∈ {0, 1}, then lead to the desired equality.

To study E(X) using Proposition 5.2.1, one needs to analyze low-degree complete in-
tersections in some detail. [Wan22, §5] repeatedly uses the following lemma describing the
low-degree components of non-integral (2, 2)-CI’s and (2, 3)-CI’s:

Lemma 5.2.2. Let n ≥ 2 and K = K. Let Y be a (d, e)-CI of the form V (A,B) ⊆ PnK , with
d = 2 and e ∈ {2, 3}. Then Y is non-integral if and only if it has an irreducible component of
degree ≤ 3. Let Z be any such component, equipped with the reduced induced scheme structure.
Then the following dichotomy holds:
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(1) If degZ ≤ 2, or e = 3 and A is reducible, then dim(Span(Z)) ≤ n− 1.

(2) If degZ = 3, and e = 2 or A is irreducible, then dim(Span(Z)) = n.

Furthermore, dim(Span(Z)) ≤ n− 1 if and only if Z is a (1, degZ)-CI.

Proof. The first part is clear, since deg Y = de ≤ 6. Now fix Z. Since dimZ = n− 2, and
Z is integral, the final sentence is clear: both conditions are equivalent to “Z lies in an
(n− 1)-plane (scheme-theoretically)”. So it remains to prove (1)–(2).

If degZ ≤ 2, then dim(Span(Z)) ≤ dim(Z) + 1 = n− 1 by [EH87, Proposition 0]. This
proves (1)–(2) when degZ ≤ 2.

Now suppose degZ = 3. If A is reducible, then since Z is integral, there must exist
a nontrivial (and thus linear) factor L | A such that V (L,B) ⊇ Z; and thus e = 3 and
Z = V (L,B) ⊆ V (L). Conversely, suppose Z = V (L,C) for some nonzero linear form L
and cubic form C (with L ∤ C). Then V (A,B) ⊇ V (L,C), i.e. A,B lie in the saturated
homogeneous ideal (L,C). So for degree reasons, L | A and e = 3 (or else L | A,B, which is
impossible).

Thus we have shown that if degZ = 3, then Z is a (1, 3)-CI if and only if A is reducible,
in which case e = 3 must hold. This proves (1)–(2) when degZ = 3.

Let us now record some results and proofs of a folklore nature.

Remark 5.2.3. Technical points (some implicit) in [Wan22] include taking care to work with
saturated homogeneous ideals when necessary (as in the proof of Lemma 5.2.2); also recall
that for homogeneous ideals, prime implies radical implies saturated.

Proposition 5.2.4. For a cubic scroll Σ over K = K, the following hold:

(1) Σ contains a nonempty open subscheme of a (2, 2)-CI in Span(Σ).

(2) Σ is singular if and only if it is a cone, in which case it is a cone over a cubic scroll of
dimension dim(Σ)− 1.

Proof. By Definition 5.1.25, Σ is, in the sense of [EH87], a “variety of minimal degree” in
Span(Σ) ∼= Pd+2, where d := dim(Σ). Now inspect the statement [EH87, Theorem 1] and
elaboration [EH87, pp. 4–6 of §1]. We find that Σ is, in the language of [EH87], a “rational
normal scroll” of the form S(a1, . . . , ad), where a1, . . . , ad are integers with 0 ≤ a1 ≤ · · · ≤ ad
and a1 + · · ·+ ad = 3; that S(a1, . . . , ad) is smooth if a1 ≥ 1, and a cone over S(a2, . . . , ad) if
a1 = 0; and that the schemes S(1, 1, 1) ⊆ P5, S(1, 2) ⊆ P4, and S(3) ⊆ P3 are (up to linear
change of coordinates) defined by the homogeneous ideals (x3x6 − x4x5, x1x6 − x2x5, x1x4 −
x2x3), (x3x5−x24, x1x5−x2x4, x1x4−x2x3), and (x2x4−x23, x1x4−x2x3, x1x3−x22), respectively.

Claim (1) follows, since VP5(x1x6− x2x5, x1x4− x2x3), VP4(x1x5− x2x4, x1x4− x2x3), and
VP3(x1x4 − x2x3, x1x3 − x22) are (2, 2)-CI’s that coincide with S(1, 1, 1), S(1, 2), and S(3),
respectively, away from V (x1). It also follows that if Σ is singular, then it is a cone. On
the other hand, if Σ is a cone, say over Y , then Y ⊆ Σ is an integral (d − 1)-fold with
deg Y = degΣ = 3 and dim(Span(Y )) = dim(Span(Σ)) − 1 = d + 1, i.e. Y is a cubic
(d− 1)-scroll; so by [EH87, Theorem 1] and [EH87, pp. 4–6 of §1], we have d− 1 ≥ 1, and
Y ∼= S(b1, . . . , bd−1) and Σ ∼= S(0, b1, . . . , bd−1) for some integers b1, . . . , bd−1; and thus Σ is
singular.
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Proposition 5.2.5. Let S ⊆ P3 be a (3)-CI over K = K. Then S contains a line.

Proof. See [Mus17, Theorem 1.1].

For the rest of this section, let k denote a finite field.

Definition 5.2.6. Fix a prime ℓ ∤ |k|. Let Y,X denote arbitrary projective k-varieties.

(1) Define H•(Y ) := H•(Y × k,Qℓ) using ℓ-adic cohomology with Qℓ-coefficients.

(2) For each i ≥ 0, let E i(Y ) denote the multiset of (geometric) Frobenius eigenvalues on
H i(Y ).

(3) Let E i△(X,P) := (E i(X)∪E i(PdimX
k )) \ (E i(X)∩E i(PdimX

k )) for i ≥ 0. In other words, if

α ∈ Qℓ has multiplicities j1, j2 ≥ 0 in E i(X), E i(PdimX
k ), let it have multiplicity |j1− j2|

in E i△(X,P).

(4) Define E△(X,P) :=
∑

i≥0 E i△(X,P) by “summing multiplicities” over i.

Remark 5.2.7. Deligne’s purity theorem implies that each E i(Y ) above consists of |k|-Weil
numbers α ∈ Qℓ of weight w(α) ≤ i. (See e.g. [KW01, Remark I.7.2 and Theorem I.9.3(2)]
for a precise textbook reference in English.)

The following statement combines [Hoo91, Katz’s Appendix, assertion (2) in the proof of
Theorem 1] and [GL02, first sentence of Remark 3.5]. Both are important for us, but the
latter seems to appear without proof in [GL02], so we sketch some.

Theorem 5.2.8 (Katz, Skorobogatov, et al.). Fix ℓ ∤ |k|. Fix integers n,N ≥ 0, and a
complete intersection X ⊆ Pnk with dimX = N and codimX ≥ 1. Let D := dim(Xsing).
If i ∈ Z, then (1) if i ≥ N + D + 2, then E i△(X,P) = ∅; and (2) if i = N + D + 1, then
E i(PNk ) ⊆ E i(X).

Remark 5.2.9. By [GL02, Proposition 3.2], one could add the following to Theorem 5.2.8: (3)
if i = N , then E i(PNk ) ⊆ E i(X); and (4) if 0 ≤ i ≤ N − 1, then E i△(X,P) = ∅. But we only
need (1)–(2).

Proof sketch for Theorem 5.2.8. When X is a hypersurface in a smooth projective complete
intersection Y/k of dimension ≥ 2, Theorem 5.2.8 follows from [Sko92, Corollary 2.2, up
to Veronese embedding], Theorem 5.1.8, “Betti comparison” for Y , and the geometric
irreducibility of Y . In general, one can prove Theorem 5.2.8 either inductively or directly.

Inductive proof. If D ≥ N − 1, use [Poo17, Corollary 7.5.21]. Now suppose D ≤ N − 2
(which implies N ≥ 1, since D ≥ −1). Using N − D ≥ 2, induct on codimX using
[Sko92, Corollary 2.2], [GL02, Lemma 1.1(ii)], and [GL02, proofs of Theorem 2.4 and
Proposition 2.5, up to Veronese embeddings].

Direct proof. Suppose N ≥ 1 and D ≤ N − 1. Claim (1) follows from Katz [Hoo91, loc.
cit.]. And if D = −1, then (2) follows from weak Lefschetz. Now assume D ≥ 0, and let
i := N + D + 1. If 2 ∤ i, then E i(PNk ) = ∅, so (2) holds trivially. Now suppose 2 | i. Let
q := |k|. Then E i(PNk ) = {qi/2}, since i ≤ 2N . It remains to show that qi/2 ∈ E i(X). Let
T := A1

k. Following Katz, we can reduce to the case in which there exists a closed subscheme
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Z ⊆ PnT , flat over T , such that (i) Z0 = X and (ii) Y := Z1 is a smooth complete intersection
in Pnk with dimY = N . In this case, [Gro72, Deligne’s Exposé I, Corollaire 4.3] implies

that the specialization map H i(Zt)→ H i(Z ×T k(T ),Qℓ) is an isomorphism at t = 1 (since
D ≥ 0), and a surjection at t = 0. So by Gk-equivariance, E i(Y ) ⊆ E i(X). But i ≥ N + 1
(since D ≥ 0), so E i(Y ) = E i(PNk ) (by (1) for Y ). Thus {qi/2} = E i(PNk ) ⊆ E i(X).

The following standard result is also essential in the proof of Proposition 5.1.9:

Lemma 5.2.10 (Real amplification). Fix an integer l ≥ 0 and a tuple β ∈ {z ∈ C : |z| ≥ 1}l.
Then lim supn→∞ℜ(βdn1 + · · ·+ βdnl ) ≥ l holds for every integer d ≥ 1.

Proof. We may assume l ≥ 1 and d = 1. Then, Dirichlet’s approximation theorem implies
that lim supn→∞ℜ(· · ·) is +∞ if ∥β∥∞ > 1, and l otherwise.

Proof of Proposition 5.1.18. The first part is clear: Xsing(k) is Gk-invariant, so the geometric
point x : Spec k → X must factor through Spec k. It remains to prove the second part.
Suppose k = Fq, and let kr := Fqr and Nr(Y ) := #Y (kr) for any given integer r ≥ 1 and
k-scheme Y . Clearly X is reduced, so by [DLR17, §2.3, eq. (8)], the Galkin–Shinder formulas
imply (for all r ≥ 1) the equality

Nr(F (X)) =
Nr(X)2 − 2(1 + |kr|dimX)Nr(X) +N2r(X)

2|kr|2
+ |kr|−2+dimXNr(Xsing).

Now recall our assumption on Xsing(k). By an inspection of the three cases of [DLR17,
§4.4, Proposition 4.8], it follows that there exists a smooth genus 4 curve C/Fq such that
Nr(F (X)) = 1

2
(Nr(C)

2 +O(Nr(C)) +N2r(C)). Thus Nr(F (X)) = |kr|2 + O(|kr|3/2). Since
dimX = 3 and Nr(Xsing) = O(1), it follows that

Nr(X)2 − 2(1 + |kr|3)Nr(X) +N2r(X) = 2|kr|4 +O(|kr|7/2).

For all d ≥ 1, let Ed(X) := Nd(X)− |P3(kd)|. Then Nr(X)− |kr|3 = Er(X) + |kr|2 +O(|kr|)
and N2r(X) = E2r(X) + |kr|6 + |kr|4 +O(|kr|2), so we easily obtain

(Er(X) + |kr|2)2 +O(Er(X) · |kr|) +O(Nr(X)) + E2r(X) = |kr|4 +O(|kr|7/2).

Now fix ℓ ̸= p, fix an embedding ι : Qℓ ↪→C, and let α1, . . . , αb ∈ C denote the weight-4
eigenvalues on C ⊗Qℓ

H4(X). For each i ∈ [b], let α̃i := |k|−4/2αi ∈ S1. Then Ed(X) =
|kd|4/2(α̃d1 + · · · + α̃db − 1) + OX(|kd|3/2) uniformly over d ≥ 1, by Theorem 5.2.8(1). In
particular, Ed(X)≪X |kd|2 and Nd(X)≪X |kd|3, so ultimately,

((α̃r1 + · · ·+ α̃rb − 1) + 1)2 +
(
α̃2r
1 + · · ·+ α̃2r

b − 1
)
= 1 +OX(|kr|−1/2).

Dirichlet’s approximation theorem (applied to the phases α̃1, . . . , α̃b) then yields b2+(b−1) = 1
(cf. Lemma 5.2.10), whence b = 1 (since b ≥ 0). Theorem 5.2.8(2) then gives α̃1 = 1, which
implies (by the trace formula) that X is |E|-good.
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5.3 Analyzing cubic threefolds as conic bundles

Fix a finite field k := Fq. Let X := V (C) denote a projective cubic hypersurface in P4
k.

Assume dim(Xsing) ≤ 0. (In particular, C must be absolutely irreducible, by Theorem 5.2.8(1)
and [Poo17, Corollary 7.5.21].)

5.3.1 Counting using a conic bundle structure

In addition to assuming dim(Xsing) ≤ 0, we now make the following assumptions.

(1) We assume p ≥ 3 whenever necessary or convenient.

(2) We assume that Xk does not contain any 2-plane P .

Under the above assumptions, we will proceed to count points roughly along the lines of
[DLR17, §4.3] and [Laf16] (but note that we have not assumed smoothness).

First, it is known that every projective cubic threefold over k contains a line (since every
projective cubic surface does). By enlarging k (and applying a GL5(k)-transformation) if
necessary, we may assume that X contains L := V (x1, x2, x3).

Next, given a 5-vector x, let π(x) denote the 3-vector (x1, x2, x3). Then we may write

C(x) = f + 2q1x4 + 2q2x5 + l1x
2
4 + 2l2x4x5 + l3x

2
5,

for some forms f, qi, lj in π(x), with f cubic, qi quadratic, and lj linear.
By assumption, if x′ = (x1, x2, x3) ∈ k3 \ {0}, the plane P[x′] through L, [x

′] (i.e. through
[e4], [e5], [x

′]) is not contained in X. In other words, (f, qi, lj)(x
′) ̸= 0. So let Qx′ denote the

projective conic

V (fy21 + 2q1y1y2 + 2q2y1y3 + l1y
2
2 + 2l2y2y3 + l3y

2
3) ⊆ {[y] ∈ P2},

canonically embedded into X via [y] 7→ [y1x
′ + y2e4 + y3e5], with image Q[x′] ⊆ X, say.

Note that the (restricted) projection [π] : X \ L → P2 fibers X \ L into affine conics
Q[x′] \ L; equivalently, the plane P[x′] intersects X in the product of L and Q[x′].

Remark 5.3.1. We are essentially writing π(x) = y1x
′, and “factoring out” y1 to get Qx′ .

Definition 5.3.2. Let M :=

[
f q1 q2
q1 l1 l2
q2 l2 l3

]
and (δ1, δ2, δ3) := (l1l3 − l22, f l3 − q22, f l1 − q21). Let

Γ := V (detM) ⊆ {[x′] ∈ P2}, where

detM = fδ1 − q1(q1l3 − q2l2) + q2(q1l2 − q2l1) = fδ1 − q21l3 − q22l1 + 2q1q2l2 ∈ k[x′].

Proposition 5.3.3. Here

#X(k)−#P3(k) =− q2#{[x] ∈ L(k) : l1x24 + 2l2x4x5 + l3x
2
5 = 0}

+ q
∑

[x′]∈Γ(k)

(−1 + #{distinct k-lines on Q[x′]}).
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Remark 5.3.4. As [x′] varies over Γ, the lines on Q[x′] presumably cut out a closed subscheme Γ′

of the Fano scheme of lines F (X), which in turn sits in the Grassmannian Gr(2, 5) ⊆ P(
∧2 k5).

However, it is unclear (both theoretically and computationally) how suitable or well-developed
the theory of Γ′ is for our purposes.

Proof sketch. Here each Q[x′] is in fact a conic (due to the plane-free assumption on X). So
we may follow the casework of [DLR17, pp. 8–9, proof of Proposition 4.6]. Specifically, write
#X(k)−#L(k) as∑

[x′]∈P2(k)

#Q[x′](k)−
∑

[x′]∈P2(k)

#{[x] ∈ L(k) : l1x24 + 2l2x4x5 + l3x
2
5 = 0}.

The first sum Σ1 simplifies (upon considering smooth and singular Q’s separately) to

(q + 1)(q2 + q + 1) + q
∑

[x′]∈Γ(k)

(−1 + #{distinct k-lines on Q[x′]}),

while the second sum Σ2 simplifies (upon “switching the order of x′,x”) to

(q + 1)2 + q2#{[x] ∈ L(k) : l1x24 + 2l2x4x5 + l3x
2
5 = 0 ∀x′}.

The result follows upon noting #L(k) + (q + 1)(q2 + q + 1)− (q + 1)2 = #P3(k).

Remark 5.3.5. The proof above works for an arbitrary projective cubic threefold X/k con-
taining L such that there exists no 2-plane P/k with Lk ⊆ P ⊆ Xk. (No hypothesis on
isolated singularities is needed.) However, the formula could easily (but somewhat tediously)
be adjusted to allow for such 2-planes.

Proposition 5.3.6 (Cf. [DLR17, p. 9, Proposition 4.7]). Fix [x′] ∈ Γ(k). Then Q[x′] is

(1) reducible over k, i.e. the product of two distinct k-lines, if and only if (δ1, δ2, δ3) ̸= 0
and −δi ∈ (k×)2 ∪ {0} for all i ∈ [3];

(2) non-reduced over k, i.e. a double k-line, if and only if (δ1, δ2, δ3) = 0; and

(3) integral over k, i.e. the product of two distinct conjugate lines defined over k but not
over k, otherwise.

Proof. By assumption, Q[x′] is in fact a conic. Here Q[x′]
∼=k Qx′ := V (yTMy), where

yTMy = fy21 + 2q1y1y2 + 2q2y1y3 + l1y
2
2 + 2l2y2y3 + l3y

2
3.

By assumption, detM = 0, from which a routine computation yields δ2δ3 = (q1q2−fl2)2 ∈ k2.
Similarly, δ1δ2 ∈ k2 and δ1δ3 ∈ k2. In particular, if −δi ∈ (k×)2 for some i ∈ [3], then
−δj ∈ k2 for all j ∈ [3].

Now fix i ∈ [3]. Essentially by [DLR17, first paragraph of proof of Proposition 4.7]
(i.e. casework on |(Qx′ ∩ V (yi))(k)|), we know that if δi ̸= 0, then V (yi) ̸⊆ Qx′ , and

• Qx′ is k-reducible if −δi ∈ (k×)2, while
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• Qx′ is k-reduced and k-irreducible (i.e. k-integral) otherwise.

Consequently, if δ ≠ 0, then we have established the desired dichotomy between (1) and
(3). Finally, suppose δ = 0. Then it remains precisely to show that Qx′ is a double k-line, or
equivalently (by Galois theory) that (Qx′)k is a double k-line. To this end, write (Qx′)k as the
product of two k-lines L1, L2, and note that for each i ∈ [3], we either have V (yi)k ∈ {L1, L2},
or else V (yi)k ∩ L1 = {pi} = V (yi)k ∩ L2 for some point pi ∈ P2(k). In any case, we can find
points qi ∈ P2(k) with qi ∈ V (yi)k ∩L1 ∩L2. Here we must have {q1}∩ {q2}∩ {q3} = ∅, since
V (y1, y2, y3)k = ∅. But also, {q1, q2, q3} ⊆ L1 ∩ L2. Thus L1 = L2, as desired.

To go further, we must analyze X’s singularities (or lack thereof).

Observation 5.3.7. C is singular at a given (geometric) point x = [x4e4 + x5e5] ∈ L(k) if and
only if l1x

2
4 + 2l2x4x5 + l3x

2
5 vanishes identically as a linear form in x′.

Proof. By assumption, “C|L” vanishes identically, so C, ∂x4C, ∂x5C vanish on the (affine)
cone of L. Next, if we write C(x) = O((x′)2) + l1x

2
4 + 2l2x4x5 + l3x

2
5, then ∂xiC, for i ∈ [3],

simplifies to (∂xil1)x
2
4 + 2(∂xil2)x4x5 + (∂xil3)x

2
5 (a binary quadratic form in x4, x5) on the

cone of L. But l1, l2, l3 are linear, so the desired result immediately follows.

Remark 5.3.8. In particular, #(Xsing ∩ L)(k) ≤ 2, since X has isolated singularities. There
is a conceptual proof of this fact: “∇xiC|L” is a quadratic polynomial on L for each i, so
L ̸⊆ Xsing implies that there exists i such that “∇xiC|L” has at most 2 distinct roots.

Example 5.3.9. The data in [Wan21f, Data for... X (in general).xlsx] seems consis-
tent with the propositions (and observation) above.

5.3.2 A convenient choice of a line

By enlarging k (and applying a GL5(k)-transformation) if necessary, we may assume that

|Xsing(k) ∩ {[e4], [e5]}| = min(|Xsing(k)|, 2),

and that X contains the line L := V (x1, x2, x3) through [e4], [e5]. To justify the existence of
such a “convenient line” L requires some proof, which we now give (by casework).

Proof when |Xsing(k)| ≥ 2. Say Xsing(k) ⊇ {[e4], [e5]}. Then the binary cubic form “C|L”
vanishes identically, because C itself is singular at [e4], [e5] ∈ L(k) (forcing “C|L” to vanish
to order ≥ 4).

Proof when |Xsing(k)| = 1. Say Xsing(k) = {[e4]}. We must show that [e4] is contained in a
line on Xk. To this end, consider an arbitrary (nontrivial) hyperplane section S of Xk. Then
S is a projective cubic surface, so it must contain a line l. If [e4] ∈ l, then we are done, so
suppose not. Now let P denote the (unique) plane through [e4], l. If P ⊆ S, then we may
simply choose any line on P through [e4]. So suppose P ̸⊆ S. Then P ∩ S is a plane cubic
containing [e4], l. But, crucially, the ternary cubic form “C|P∩S” must be singular at [e4]
(since C itself is singular at [e4]). Since [e4] /∈ l, we conclude that [e4] is a singular point of a
conic Q, which can only occur if Q is a product of two lines passing through [e4]. Either line
then suffices.
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Proof when Xsing(k) = ∅. We must show that Xk contains a line. It suffices to choose any
(nontrivial) hyperplane section S ⊆ Xk, and then any line l ⊆ S. (By Bertini’s theorem, we
can choose S to be smooth if desired, but this is unnecessary.)

Henceforth, we fix a “convenient line” L as above, though in principle other lines could
also be used.

5.3.3 The smooth case

See [DLR17, par. 4 of §4.3]. (Here Γ′ → Γ is a fairly “nice” double cover, already analyzed
by [BSD67].)

5.3.4 The case of exactly one singular point contained in L

By assumption, either l1 = 0 or l3 = 0. Assume the former (l1 = 0). Then either l2 = 0
and l3 ≠ 0, or else l2, l3 are linearly independent. (Otherwise, Xsing would contain a point in
L \ {[e4]}.) In particular,

#{[x] ∈ L(k) : l1x24 + 2l2x4x5 + l3x
2
5 = 0} = #{[x] ∈ L(k) : x5 = 0} = 1.

Here (δ1, δ2, δ3) = (−l22, f l3 − q22,−q21) and
detM = fδ1 − q21l3 + 2q1q2l2 = −fl22 + 2q2l2q1 − l3q21.

Here C = f + 2q1x4 + 2q2x5 + 2l2x4x5 + l3x
2
5.

Proposition 5.3.10. Here detM is a nonzero ternary quintic form in k[x′].

Proof when l2 ̸= 0. Noting the linearity of C in x4, we write

C = f + 2q2x5 + l3x
2
5 + 2(q1 + l2x5)x4.

By assumption, C is (absolutely) irreducible, so gcd(f+2q2x5+ l3x
2
5, q1+ l2x5) = 1 in k[x′, x5].

Consequently, Gauss’ lemma implies that gcd(f + 2q2x5 + l3x
2
5, q1 + l2x5) = 1 in k(x′)[x5].

But in k(x′)[x5], the remainder of f + 2q2x5 + l3x
2
5 modulo l2x5 + q1 is precisely −l−2

2 detM ,
so detM ̸= 0, as desired.

Proof when l2 = 0. Here l3 ̸= 0, and detM = −l3q21. Also, C = f + 2q1x4 + 2q2x5 + l3x
2
5.

Suppose for contradiction that q1 = 0. Then X is the (projective) cone over a projective
cubic surface S. Now fix a line l on Sk = Xk ∩ {x4 = 0}. Then l extends to a plane on Xk,
contradicting our plane-free assumption on X. Thus in fact q1 ̸= 0, so detM ̸= 0.

Corollary 5.3.11. Here

#X(k)−#P3(k) ≤ −q2 + (q2 +O(q3/2))#{irreducible components of Γk}.
Proof sketch. Similar to the analogous corollary when |Xsing(k)| ≥ 2 (treated below).

Proposition 5.3.12. If [x′] ∈ Γ(k), then the number of distinct k-lines on Q[x′] is

(1) exactly 1 + (−δ2(x
′)

k
), defined using the Legendre symbol over k, if l2(x

′) = q1(x
′) = 0;

and

(2) exactly 2, otherwise.

Proof. Apply Proposition 5.3.6.
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5.3.5 The case of two or more isolated singularities in L

By assumption, l1 = l3 = 0. Hence l2 ≠ 0 (or else Xsing would contain L entirely). In
particular,

#{[x] ∈ L(k) : l1x24 + 2l2x4x5 + l3x
2
5 = 0} = #{[x] ∈ L(k) : x4x5 = 0} = 2.

Here (δ1, δ2, δ3) = (−l22,−q22,−q21) and detM = fδ1 + 2q1q2l2 = (−fl2 + 2q1q2)l2.

Proposition 5.3.13. Here detM is a nonzero ternary quintic form in k[x′].

Proof. Here C = f+2q1x4+2q2x5+2l2x4x5. But by assumption, C is (absolutely) irreducible,
so f · 2l2 ̸= 2q1 · 2q2. (Otherwise, there would exist forms a, b, c, d with (f, 2l2) = (ab, cd) and
(2q1, 2q2) = (ac, bd), and we would have C = (a+ dx5)(b+ cx4), with both factors necessarily
nonzero of degree ≥ 1; contradiction.)

Earlier, we noted that l2 ̸= 0. So in fact, detM = (−fl2 + 2q1q2)l2 ̸= 0.

Corollary 5.3.14. Here

#X(k)−#P3(k) ≤ −2q2 + (q2 +O(q3/2))#{irreducible components of Γk}.

Proof sketch. Apply the trivial bound −1+#{distinct k-lines on Q[x′]} ≤ 1. Then note that

|Γ(k)| = O(1) + (q +O(q1/2))#{irreducible components of Γk defined over k}

by the Lang–Weil bound, for instance. (Note that if C/k is an embedded projective curve not
defined over k, then there exists a conjugate C ′/k distinct from C, so that “C(k)” is contained
in the finite set (C ∩ C ′)(k) of size O(1).)

Proposition 5.3.15. If [x′] ∈ Γ(k), then the number of distinct k-lines on Q[x′] is exactly 1
if (l2, q1, q2)(x

′) = 0, and exactly 2 otherwise.

Proof. Apply Proposition 5.3.6.

Remark 5.3.16 (Original approach to one direction of Theorem 5.1.26). Suppose Γk has ≥ 3
irreducible components. Then fl2−2q1q2 has ≥ 2 prime factors (counted without multiplicity)
distinct from (l2).

Case 1: A | fl2 − 2q1q2 for some linear form A ∈ k[x1, x2, x3] with (A) ̸= (l2). Then the
reduction of C = f +2q1x4+2q2x5+2l2x4x5 modulo A is reducible, and therefore has a linear
factor B mod A such that C mod (A,B) vanishes identically. So Xk = VP4(C)k contains the
2-plane A = B = 0 in in P4

k
. Thus the condition 5.1.26(3) holds; so does condition 5.1.26(4)

(cf. [Wan22, Proposition 5.9(3)⇒(1)]).
Case 2: fl2− 2q1q2 = AB for some irreducible quadratic forms A,B ∈ k[x1, x2, x3]. Then

C · l2 = AB + 2(q1 + l2x5)(q2 + l2x4). Let U denote the open subscheme {l2 ̸= 0} ⊆ P4
k
. Then

Xk contains the scheme-theoretic intersection VU (A, q1+l2x5), where A, q1+l2x5 are quadratic
forms “missing” the variable x4 (and therefore sharing a singularity in P4

k
). Furthermore,

l2 ∤ A (since A is irreducible), so there exists (x1, x2, x3, x5) ∈ k
4 \ {0} with A = 0 ̸= l2 and

x5 = −q1/l2; thus VU(A, q1 + l2x5) is nonempty. So the condition 5.1.26(4) holds.
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Chapter 6

Isolating special integral solutions

6.1 Introduction

As in §4.1, let m := 6 and F := x31 + · · · + x36. Fix w ∈ C∞
c (Rm) with (F,w) smooth in

the sense of Definition 1.4.3. As we mentioned in §4.1, the analysis of the delta method for
NF,w(X) (see (3.2)–(3.3)) naturally breaks up into two parts: one over the locus F∨(c) ̸= 0
(where “reciprocal” Hasse–Weil L-functions 1/L(s, Vc) naturally arise), and one over the locus
F∨(c) = 0 (where the Q-varieties Vc are singular, and thus need to be treated separately).

Since m ≥ 5, it is known that the c = 0 terms isolate the singular series in HLH for (F,w)
(see Definition 1.4.6 and §3.4). In [Wan21d], we interpret the sum

Y −2
∑
n≥1

∑
c∈Zm

n−mSc(n)Ic(n) · 1c̸=0 · 1Vc is singular

in terms of special Q-subvarieties (specifically, linear spaces) on V , which allows one to cleanly
reformulate HLH for (F,w) in a useful way (for Chapter 8). The main goal of the present
chapter is to summarize the work done in [Wan21d]. Throughout Chapter 6, we let

∑′
c∈∗ · · ·

denote
∑

c∈∗ with F∨(c)=0 · · · , unless specified otherwise.

Theorem 6.1.1. For some absolute constant δ > 0, we have (uniformly over X ≥ 1)

Y −2
∑′

c∈Zm

1c̸=0 ·
∑
n≥1

n−mSc(n)Ic(n) = OF,w(X
m/2−δ) +

∑
L∈C(SSV)

∑
x∈L∩Zm

w(x/X).

Remark 6.1.2. The set C(SSV) is known to be finite for general reasons (recalled in §6.3
below). For diagonal F as in Theorem 6.1.1, one can in fact compute the set C(SSV) explicitly:
see Observation 6.3.9 (essentially classical). In any case, on the Diophantine (right-hand)
side of Theorem 6.1.1, the sum over L is roughly equivalent to a union, since #C(SSV) <∞
and the pairwise intersections fit in the error term.

Remark 6.1.3. The h-invariant introduced by [DL62,DL64] provides an equivalent way to
think about linear subvarieties of cubic varieties. (See e.g. [Die17, Lemma 1.1] for a modern
record of a more general equivalence.) In fact, the proof of the important Lemma 6.4.1
below (see [Wan21d, §6]) essentially relies on (a convenient choice of) “h-decompositions of
F” corresponding to the L’s in Theorem 6.1.1.
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Here is the main result here (in the present chapter) needed for Chapter 8:

Corollary 6.1.4. For some absolute δ > 0, we have (uniformly over X ≥ 1)

Y −2
∑′

c∈Zm

∑
n≥1

n−mSc(n)Ic(n) = σ∞,F,wSFX
m−3 +OF,w(X

m/2−δ)

+
∑

L∈C(SSV)

σ∞,L⊥,wX
m/2.

Proof. Combine Theorem 6.1.1 with the routine c = 0 computation in §3.4 (isolating the
singular series). In the exponents, note that m/2 = m− 3 = 3.

Remark 6.1.5. Theorem 6.1.1 and Corollary 6.1.4 are completely unconditional results. These
results let us reformulate HLH for (F,w) as a statement purely about cancellation in the sum∑

c∈Zm 1F∨(c)̸=0 ·
∑

n≥1 n
−mSc(n)Ic(n); see Chapter 8. With any luck, a similar reformulation

might be possible much more generally. But at least for cubic forms in 4 variables, subtleties
in the Manin–Peyre constant would likely demand a more sophisticated “delta method recipe”
beyond “restriction to F∨ = 0”.

Let us sketch the proof of the theorem. (In this sketch, we restrict L to C(SSV).)
We start generally, observing that F∨|L⊥ = 0 for all L (see the first part of Proposi-

tion 6.3.2). Conversely, at least for diagonal F , most c’s on the left-hand side of Theorem 6.1.1
are in fact trivial, in the sense of the following definition:

Definition 6.1.6. Call a solution c ∈ Zm to F∨(c) = 0 trivial if c ∈ L⊥ for some L.

Actually, we cannot analyze all trivial c’s uniformly, but only the “least degenerate” ones.
Under (plausibly mild) hypotheses satisfied by diagonal F , the second part of Proposition 6.3.2
establishes a vanishing baseline for the jets j•F∨ over

⋃
L L

⊥—which inspires the following
definition:

Definition 6.1.7. Call F∨ unsurprising if uniformly over C ≥ 1, the equation F∨(c) = 0
has at most Oϵ(C

m/2−1+ϵ) integral solutions c ∈ [−C,C]m that are either nontrivial, or else

trivial with j2
m/2−1

F∨(c) = 0.

Indeed, in [Wan21d, §5], we prove (using the diagonality of F ) that F∨ is unsurprising—in
which case “almost all solutions to F∨ = 0 are trivial with nonzero 2m/2−1-jet” (qualitatively
speaking).

Remark 6.1.8. In particular (for the Gauss map γ : V → V ∨ introduced in §6.2), γ(Q) : V (Q)→
V ∨(Q) can be far from surjective, even though γ : V → V ∨ itself is birational and roughly
log-height–preserving (up to a constant factor).

Remark 6.1.9. A weaker bound of the form O(Cm/2−δ) in Definition 6.1.7 would likely suffice
for our main purposes.

For the “least degenerate” trivial c’s, Lemma 6.4.1 isolates an explicit positive bias

S̃c(p
l) = [Apl(c) +O(p−l/2)] · (1− p−1) · pl/2
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for most primes p, with Apl(c)≪ 1 essentially a combinatorial factor measuring the p-adic
“extent of speciality” of c; on average vertically, E[Apl(c)] ≈ 1. In the dominant ranges
(i.e. for n large), the resulting reduction in arithmetic complexity of Sc(n) lets us dramatically
simplify each sum of the form

∑
c∈Λ⊥ Sc(n)Ic(n) by “undoing” Poisson summation to Ic(n)

over various individual residue classes c ≡ b mod n0Λ
⊥ with n0 ≪ X1/2 dividing n.

Ultimately, this process produces corresponding sums over x ∈ Λ (as desired for The-
orem 6.1.1). However, when m = 6, we must be careful to separate c = 0 from c ̸= 0;
Lemma 3.4.1 (decay of the singular series over large moduli) provides the necessary input,
when contrasted with Lemma 3.3.5 giving decay of Ic(n) over small moduli for c ̸= 0.

For a full cross-referenced outline of the proof of Theorem 6.1.1, see [Wan21d, §5].

Remark 6.1.10. We do not need horizontal cancellation over n: at least morally, the terms
Sc(n), Ic(n) are positive for trivial c’s, while nontrivial c’s are relatively sparse. This morally
explains why we can prove Theorem 6.1.1 unconditionally. In fact, the deepest result we
use on L-functions (when m = 6) is the (purely local) Weil bound for hyperelliptic curves of
genus ≤ 2.

Remark 6.1.11. The full proof of Theorem 6.1.1 requires an error analysis to “reduce
consideration” to biases. Fortunately, several convenient features make our error analysis
here (reducing consideration to biases over F∨(c) = 0) “half an inch” easier, or clearer, than
that in Chapter 8 (reducing to L-functions over F∨(c) ̸= 0). Specifically, small moduli n and
bad primes p here cause very little pain compared to those in Chapter 8.

See Remark 6.4.3 for a discussion of what is missing for non-diagonal F .

6.2 Algebraic geometry background

Let F, V, . . . be as in §3.1. For general F , we need some classical results on the gradient map
∇F , its image, and its ramification. For diagonal F , a more explicit analysis is possible (see
§6.3.2 below).

6.2.1 The dual hypersurface and the discriminant form

Since V is smooth, the polar map [∇F ] : Pm−1 → Pm−1 is regular, i.e. defined everywhere. (It
would be better to write Pm−1 → (Pm−1)∨, but no confusion should arise.) The map [∇F ] is
finite of degree 2m−1 [Dol12, p. 29] between irreducible equidimensional projective varieties,
hence surjective. Since Pm−1 is smooth, [∇F ] must then be flat (by “miracle flatness”).

Upon restricting [∇F ] to V , we get the finite surjective Gauss map γ : V → V ∨, where
V ∨ ⊆ (Pm−1

Q )∨ denotes the dual variety of V , i.e. the closure of the union of hyperplanes
tangent to the smooth locus Vsm of V . (For us, V is a hypersurface, and Vsm = V . So
V ∨ = [∇F ]Vsm = [∇F ]V = [∇F ]V . Hence γ is indeed well-defined and surjective; and γ is
finite because it is a quasi-finite map between projective varieties.)

Here V/Q is irreducible over C, so V ∨ = γ(V ) must be too. Since γ is finite, V ∨

must therefore be a geometrically integral hypersurface, namely the zero locus of F∨ from
Proposition-Definition 3.2.3. (At least for diagonal F , one can explicitly compute F∨; see
(6.1) in §6.3.2 below.) The notation F∨ is thus convenient for us, but it is likely not standard.
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It is known that (V ∨)∨ = V [Dol12, p. 30, Reflexivity Theorem]. Furthermore, the
definition of V ∨ (together with the fact that V, V ∨ are hypersurfaces with V irreducible)
implies the divisibility F (x) | F∨(∇F (x)), and reflexivity (together with the fact that V ∨, V
are hypersurfaces with V ∨ irreducible) similarly implies the divisibility F∨(c) | F (∇F∨(c)).
These (symmetric!) divisibilities capture much of the basic duality theory for V .

The apparent symmetry between V, V ∨ thus far is deceptive, however. What complicates
matters is that V ∨, or equivalently F∨, must be singular if degF ≥ 3. (Otherwise, (V ∨)∨

would be a hypersurface of degree larger than degF , contradicting reflexivity.) Hence the
polar map [∇F∨] : Pm−1 99K Pm−1 is only a rational map, defined away from Sing(V ∨), the
set of singular points of V ∨. (Here Sing(V ∨) is a proper closed subset of V ∨.)

Nonetheless, given smooth points [x] ∈ V and [c] ∈ V ∨, the biduality theorem says that
[∇F (x)] = [c] ⇐⇒ [∇F∨(c)] = [x]. (See e.g. [Dol12, p. 30, sentence after Reflexivity
Theorem], which however does not explicitly refer to the biduality theorem by name.) For
us, Vsm = V , so biduality implies that [∇F ], [∇F∨] restrict to inverse morphisms between
V \ [∇F ]−1(Sing(V ∨)) and V ∨ \ Sing(V ∨).

Remark 6.2.1. The map γ : V → V ∨ is finite surjective (and birational, i.e. of degree 1), but
not necessarily flat (or equivalently, locally free). In fact, the finite OV ∨-algebra γ∗OV is
isomorphic to OV ∨ generically over V ∨, but not necessarily everywhere—for instance, the
geometric fiber V ×γ k(p) = Spec((γ∗OV )p⊗OV ∨,p

k(p)), and in fact the analogous set-theoretic
geometric fiber, may have size ≥ 2 at some point p ∈ Sing(V ∨).

Question 6.2.2. What is known about the fiber of γ over a singular point [c] ∈ V ∨?

Presumably the singular structure of Vc should play a role. Perhaps works of Aluffi and
Cukierman (such as [AC93,Alu95]) can help to give a precise statement.

6.2.2 Ramification and the Hessian

[∇F ] is a finite surjective morphism of smooth Q-varieties, so its ramification theory is
well-behaved. By [Dol12, p. 29, Proposition 1.2.1],

(1) the ramification divisor of [∇F ] : Pm−1 → Pm−1 is the Hessian hypersurface hess(V ) ⊆
Pm−1; and

(2) its image, the branch divisor, is St(V )∨, the dual of the Steinerian hypersurface St(V )
(with St(V ) defined scheme-theoretically as in [Dol12, p. 19, §1.1.6]).

In particular, both hess(V ), St(V )∨ are (possibly reducible or non-reduced) projective hyper-
surfaces in Pm−1. (It is worth noting that the precise geometry of hess(V ), St(V )∨ is not so
important in [Wan21d], but it may become more important in the future if one wants to
study general V . Most important for us now is that the branch divisor exists, and that it
can be computed explicitly when F is diagonal.)

When studying the Hasse principle (or even weak approximation), one can certainly
localize before counting points. For instance, the following proposition shows that on an
arbitrary smooth cubic V , as in [Hoo88] or [Hoo14] for instance, it is always non-vacuous to
count points on V with nonvanishing Hessian determinant.
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Proposition 6.2.3 ([Hoo88, Lemma 1 and its proof]). If V is a smooth cubic, then V ̸⊆
hess(V ). Furthermore, V (R) is Zariski dense in V ,1 so V (R) ̸⊆ (hessV )(R).

Remark 6.2.4 (Cf. [Hoo88, remarks in the paragraph before Lemma 1]). The intersection
V ∩hess(V ) consists of inflection points ifm = 3, and of parabolic points ifm ≥ 4 [Dol12, p. 17,
Theorem 1.1.20]. But it does not seem easy to find a general reference proving the existence
of non-inflection or non-parabolic points on V (according as m = 3 or m ≥ 4).

The following stronger technical question comes up in Proposition 6.3.2, although we
happen to be able to sidestep it there.

Question 6.2.5. Is it always true (for smooth cubic V ) that V ∨ ̸⊆ St(V )∨?

Remark 6.2.6. If V ⊆ hess(V ), then applying [∇F ] would imply V ∨ ⊆ St(V )∨. Thus an
affirmative answer to the question would give another proof of Proposition 6.2.3.

6.3 Maximal linear subvarieties under duality

Let F, V, . . . be as in §3.1. If 2 | m but m ̸= 6, extend the definition of C(SSV) from
Definition 1.4.6 in the obvious way (involving m/2-dimensional vector spaces L/Q). The
reader only interested in diagonal F can skim forwards to §6.3.2, which explicitly analyzes
C(SSV) through the lens of F∨ (in the diagonal case).

6.3.1 A preliminary general analysis

In general, classical duality theory comes into play, leading to Proposition 6.3.2 below. For
the definitions and basic properties of the polar and Gauss maps [∇F ], γ associated to V ,
see the first few paragraphs of §6.2.

Consider the affine cone C(V ) (i.e. F (x) = 0 sitting in Am
Q ). Suppose m ≥ 3 and

L ⊆ C(V ) is a vector space over Q (of arbitrary dimension). Then differentiating along L
implies L ⊥ ∇F (x) for all x ∈ L. In other words, the restriction γ|PL maps into PL⊥. But
[∇F ] : Pm−1 → Pm−1 is regular and finite, so γ|PL is itself regular and finite (since PL is
closed in Pm−1). Thus dim(L) ≤ dim(L⊥), i.e. dim(L) ≤ ⌊m/2⌋.
Remark 6.3.1. Although PL⊥ ⊆ (Pm−1)∨ is the dual variety of PL ⊆ Pm−1, we prefer to write
L⊥ instead of L∨, to avoid confusion with the dual vector space Hom(L,Q).

Since degF ≥ 3, [Deb03, Lemma 3] (or Starr [BHB06, Appendix], of which I learned from
[Dao10]) proves more: if m is even, then there are at most finitely many L’s of dimension
m/2. We would like to understand these “maximal” linear spaces L in terms of the delta
method. Proposition 6.3.2 suggests one plausible starting route: duality (i.e. detecting L⊥

through F∨).

Proposition 6.3.2. Suppose 2 | m ≥ 4, and fix L ∈ C(SSV). Then γ|PL is a finite flat
surjective morphism PL→ PL⊥ of degree 2m/2−1 ≥ 2, and PL⊥ ⊆ Sing(V ∨). Furthermore, if

PL⊥ ̸⊆ [∇F ](hess(V )) set-theoretically, then the affine jet j2
m/2−1−1F∨ vanishes over L⊥.

1One can prove density using the general Proposition 1.3.1, or the real [Law19].
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Remark 6.3.3. For diagonal F , we provide an explicit proof of Proposition 6.3.2 in §6.3.2.
For general Pm−1

Q -smooth F , we instead rely on some classical algebraic geometry—duality
theory and the ramification behavior of [∇F ]—detailed in §6.2.

We now begin the proof of Proposition 6.3.2. We know (from earlier) that γ|PL is a finite
map from PL to PL⊥. Yet dim(L) = dim(L⊥). So γ|PL is surjective, since PL⊥ is irreducible.
But γ maps V into V ∨ by definition, so PL⊥ ⊆ im γ|PL ⊆ im γ ⊆ V ∨.

Proof of first part. Since γ|PL is finite surjective and PL,PL⊥ are smooth, “miracle flatness”
implies flatness of γ|PL. Also, γ|PL has degree 2m/2−1 (cf. [Dol12, top of p. 29]), since it
is a morphism given by quadratic polynomials, between projective spaces of dimension
m/2 − 1. In particular, γ|PL : PL → PL⊥ is nowhere birational, so the biduality theorem
implies PL⊥ ⊆ Sing(V ∨).

The second part of Proposition 6.3.2 is inspired by the factorization of F∨ over Q[c1/2]
when F is diagonal (see (6.1) in §6.3.2 below). However, giving a rigorous “factorization” of
F∨ seems to require a bit of setup, since the map [∇F ] presumably need not be Galois in
general.

First, assume PL⊥ ̸⊆ [∇F ](hess(V )). Now consider the hypersurface complements
S := Pm−1 \ [∇F ](hess(V )) and X := [∇F ]−1S ⊆ Pm−1. Then S ∩ PL⊥ is a nonempty open
subset of PL⊥, yet [∇F ]|X : X → S is finite étale of degree 2m−1. Write ϕ := [∇F ]|X . By
Grothendieck’s Galois theory, there exists a finite étale Galois cover π : X ′ → X with X ′

connected and ϕ ◦ π : X ′ → S (finite étale) Galois. Let G := AutS(X
′) and H := AutX(X

′).

Constructing a product “divisible” by F∨

Over every geometric point [c] ∈ (S∩V ∨)(Q), there exists a (geometric) point [x] ∈ (X∩V )[c],
i.e. [x] ∈ X[c] with F (x) = 0. Although G may not act on X itself, it acts transitively on
X ′—so after fixing a (geometric) point p ∈ X ′

[x], we can characterize the fiber X[c] as the set

{π(gp) : g ∈ H\G} ⊆ X(Q).
Now view F (x) as a section of OX(3), and pull it back to π∗F ∈ Γ(X ′, π∗OX(3)). Then

the product α :=
∏

g∈H\G g
∗(π∗F ) defines a G-invariant section2 of the G-equivariant line

bundle L :=
⊗

g∈H\G g
∗(π∗OX(3)) on X ′, with

α|(ϕπ)−1(S∩V ∨) = 0 (since X ∩ V ⊆ ϕ−1(S ∩ V ∨), and F |X∩V = 0).

By faithfully flat (Galois) descent,3 there exist line bundles F ,D on X,S with L ∼= π∗F and
F ∼= ϕ∗D,4 and sections β, δ on X,S vanishing along ϕ−1(S ∩ V ∨), S ∩ V ∨, respectively, with
α = π∗β and β = ϕ∗δ.

But S,X are hypersurface complements in Pm−1, so Pic(Pm−1)→ Pic(S) and Pic(Pm−1)→
Pic(X) are surjective and we may identify F ,D with suitable powers of OX(1),OS(1),
respectively. Then up to a choice of nonzero constant factors, we may view β, δ as homogeneous
rational functions (i.e. ratios of homogeneous m-variable polynomials) with F∨(c) | δ and
F∨(∇F (x)) = ϕ∗F∨ | β. Here we interpret divisibility of two sections on a scheme to mean
their ratio is a global section of the obvious “tensor-quotient” line bundle.

2A G-invariant section α ∈ Γ(X ′,L) is equivalent in data to a G-equivariant morphism α : OX′ → L.
3in the form of an equivalence of categories
4It suffices to find D with L ∼= (ϕπ)∗D, and then define F := ϕ∗D.
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“Factoring” F∨

By duality theory, F (x) | F∨(∇F (x)). However, F (x)2 ∤ β on X, since (π∗F )2 ∤ α on X ′.
Indeed, given a geometric point [c] of (S ∩ V ∨) \ Sing(V ∨), biduality furnishes a unique point
[x] ∈ X[c] with F (x) = 0. So if p ∈ X ′

[x] and g ∈ G, then the section g∗π∗F evaluates to 0

at p if and only if g ∈ H. Thus π∗F ∤
∏

[1] ̸=g∈H\G(g
∗π∗F ) on X ′. It follows that (π∗F )2 ∤ α,

whence F (x)2 ∤ β; whence F∨(c)2 ∤ δ.
However, F | ϕ∗F∨, and ϕπg = ϕπ for all g ∈ G, so by inspection, α | (π∗ϕ∗F∨)deg ϕ,

i.e. δ | (F∨)deg ϕ. By absolute irreducibility of F∨, we conclude that in fact δ | F∨ and
α | (ϕπ)∗F∨. (Divisibility also holds in the other direction, but we will not need this.)

Remark 6.3.4. Our proof of δ | F∨ requires (S ∩ V ∨) \ Sing(V ∨) ̸= ∅, i.e. that S ∩ V ∨ and
V ∨ \Sing(V ∨) are nonempty (open) subsets of V ∨; since PL⊥ ⊆ V ∨, the former nonemptiness
follows conveniently from our assumption S ∩ PL⊥ ̸= ∅ (but see Question 6.2.5), while the
latter follows (unconditionally) from “generic smoothness” in characteristic 0 (since V ∨ is
reduced).

Differentiating the product

Using S ∩ PL⊥ ̸= ∅ one last time (more seriously than before), we will now complete the
proof of the second part of Proposition 6.3.2.

Completion of proof. By assumption, S∩PL⊥ ̸= ∅. Yet ϕ|X∩PL = γ|X∩PL : X∩PL→ S∩PL⊥

is finite étale of degree 2m/2−1. Say [c] ∈ (S ∩ PL⊥)(Q) is a geometric point, and fix p ∈ X ′
[c].

Then there exist at least 2m/2−1 cosets g ∈ H\G with πgp ∈ (X ∩ PL)(Q) ⊆ V (Q). In a G-
invariant affine open neighborhood of (the image of) p in X ′,5 the Leibniz rule—applied after
locally trivializing g∗π∗OX(3) for all g ∈ G—thus implies that jrpα(p) = 0 for r := 2m/2−1− 1,
where jr : L → JrL denotes the rth-order jet map “along” L (from L to its rth jet bundle
JrL).

Since α | (ϕπ)∗F∨, Leibniz then implies jrp(ϕπ)
∗F∨(p) = 0 “along” the pullback line

bundle (ϕπ)∗OS(degF∨). But ϕπ : X ′ → S is étale at p ∈ X ′, so jr[c]F
∨([c]) = 0 “along”

OS(degF∨) itself, over all points [c] ∈ (S ∩ PL⊥)(Q). Finally, S ∩ PL⊥ is dense in PL⊥, so
the vanishing of the rth-order jet section jrF∨ extends to all points [c] ∈ PL⊥, as desired.

Remark 6.3.5. In the friendly setting above, our étale morphisms (such as ϕπ : X ′ → S), after
base change to an algebraically closed field, always induce isomorphisms on completed local
rings. So e.g. at regular points we can do calculus purely in terms of formal power series (in
general by the Cohen structure theorem, but for us S is already given as a piece of Pm−1).

Question 6.3.6. For smooth V , is PL⊥ ⊆ [∇F ](hess(V )) possible (for L ∈ C(SSV))? If so,
then in such situations, does the conclusion of Proposition 6.3.2 still hold?

5Such a neighborhood exists by [Mus11, paragraph after Corollary A.3], since X ′ is certainly quasi-
projective.
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6.3.2 The diagonal case

Say F is diagonal, and write F = F1x
3
1 + · · ·+ Fmx

3
m. Then we can explicitly verify all the

theory above. Here [∇F ] : [x] 7→ [3F1x
2
1, . . . , 3Fmx

2
m] is Galois with abelian Galois group

µm2 /µ2
∼= (Z/2)m−1, and hess(V ) is cut out by (6F1x1) · · · (6Fmxm) = 0.

Describing C(SSV)

Since F is diagonal, the number of m/2-dimensional vector spaces L ⊆ C(V )C over C
is (degF )m/2 = 3m/2 times Cm/2−1 := (m − 1)!!, the number of pairings of [m]. (See
e.g. [BHB06, Starr’s Appendix, top of p. 302] for a more general statement on Fermat
hypersurfaces of degree d ≥ 3 in s ∈ {4, 6, 8, . . . } variables.) So we make a combinatorial
definition:

Definition 6.3.7. Let J = (J (k))k∈K denote an ordered set partition of [m]: a list of pairwise
disjoint nonempty sets J (k) ⊆ [m] covering [m], indexed by a set K ∈ {[1], [2], [3], . . . }. Call
J ,J ′ equivalent if they define the same unordered partition of [m] (i.e. if K = K′ and
{J (k) : k ∈ K} = {J ′(k) : k ∈ K′}).

Call J a pairing if |J (k)| = 2 for all k ∈ K. Call J permissible if for all k ∈ K
and i, j ∈ J (k), we have Fj/Fi ∈ (Q×)3. For a permissible J , let RJ := {c ∈ Zm :

if k ∈ K and i, j ∈ J (k), then ci/F 1/3
i = cj/F

1/3
j }—and given c ∈ RJ , define c : K → R so

that for all k ∈ K and i ∈ J (k), we have ci/F
1/3
i = c(k).

Knowing the number of L ⊆ C(V )C, we can then give an exhaustive construction: each
equivalence class of pairings J yields 3m/2 distinct L/C, obtained by setting Fix

3
i + Fjx

3
j = 0

for each part J (k) = {i, j}. Over Q, we must set xi + (Fj/Fi)
1/3xj = 0—which is valid when

Fi ≡ Fj mod (Q×)3. It follows that the only m/2-dimensional L’s on C(V )C, C(V ) (over
C,Q, respectively) are the “obvious” ones.

Remark 6.3.8. Since we do not know of a reference proving the aforementioned statement
of Starr, we should mention that given d, s, the statement easily follows from Gaussian
elimination, symmetry, and the fact that over C, the only linear automorphisms of the “halved”
(i.e. s/2-variable degree-d) Fermat hypersurface are the “obvious” ones (see e.g. [Shi88] or
[Kon02, proofs of Proposition 3.1 and Example 1]).

Therefore we obtain the following (essentially classical) result:

Observation 6.3.9. There is a canonical bijection, between C(SSV) and the set of equivalence
classes of permissible pairings J , characterized by L ∩ Zm = R⊥

J (an equality of sublattices
of Zm).

Analyzing the discriminant

For convenience, fix square roots F
1/2
i ∈ Q×

. Up to scaling (which matters in the non-
archimedean analysis underlying Lemma 6.4.1, but not here), the discriminant form F∨(c)
factors in Q[c1/2] as∏

ϵ

(ϵ1F
−1/2
1 c

3/2
1 + ϵ2F

−1/2
2 c

3/2
2 + · · ·+ ϵmF

−1/2
m c3/2m ) ∈ Q[c], (6.1)
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with the product taken over ϵ = (ϵ1, . . . , ϵm) with ϵ1 = 1 and ϵ2, . . . , ϵm = ±1. (This
formula is classical; see [Wan21c, §1.2, proof of Proposition-Definition 1.8 for diagonal F ] or
[HB98, eq. (4.2)].)

Now fix a tuple c ̸= 0 with F∨(c) = 0, and fix square roots c
1/2
i ∈ Q. Then using formal

power series calculus over ci ̸= 0 (by Remark 6.3.5, adapted to A1
Q → A1

Q, t 7→ t2 away

from the origin), we will prove the following result, which precisely characterizes the order of
vanishing of F∨ at c:

Proposition 6.3.10. Fix r ≥ 0. Then the affine jet jrF∨ vanishes at a given point c ̸= 0 if
and only if there exist at least r + 1 distinct ϵ with (· · ·) = 0.

Remark 6.3.11. A short computation yields the equality

#{such distinct ϵ’s} =
∑

[x]∈γ(Q)−1([c])

2#{i∈[m]:xi=0},

where γ(Q)−1([c]) := {[x] ∈ V (Q) : [∇F (x)] = [c]} = {singular Q-points of Vc}. (Here xi
corresponds to ϵiF

−1/2
i c

1/2
i , with some ambiguity or “multiplicity” in ϵi when xi = 0.) The

previous display provides a geometric interpretation of the number of ϵ’s in Proposition 6.3.10;
thus we can formulate the proposition more geometrically, without reference to ϵ’s. Does this
geometric formulation generalize somehow to arbitrary Pm−1

Q -smooth F?

Proof. Induct on r ≥ 0. The base case r = 0 follows directly from the factorization of F∨.
Now suppose r ≥ 1, and assume the result for r − 1.

First, we prove the forwards implication for r. Here it suffices to work with “pure”
derivatives ∂≤rci , for just a single index i with ci ̸= 0. For example, if c1 ̸= 0, and there exist
exactly r distinct ϵ1, . . . , ϵr with (· · ·) = 0, then r ≤ 2m−1, and the product rule implies

∂rc1F
∨(c) ∝3,r,F (c

1/2
1 )r

∏
ϵ̸=ϵ1,...,ϵr

(· · ·) ̸= 0.

But if jrF∨(c) = 0, then by the inductive hypothesis, there must exist at least r distinct ϵ’s
with (· · ·) = 0, and thus at least r + 1. This proves the the forwards implication for r.

It remains to prove the backwards implication, i.e. that if there exist at least r + 1
distinct ϵ’s with (· · ·) = 0, then jrF∨(c) = 0. We must take extra care if c1 · · · cm = 0. Say
ci = 0 for i ∈ I. Then the following “formal analytic functions”—indexed by certain triples
(a, b, E)—span a Q–vector space closed under c-differentiation:∏

i∈I

caii
∏
i/∈I

c
bi/2
i

∏
ϵ∈E

(ϵ1F
−1/2
1 c

3/2
1 + · · ·+ ϵmF

−1/2
m c3/2m ) ∈ Q[ci]i∈I [c

1/2
i , c

−1/2
i ]i/∈I ,

for (a, b) ∈ ZI≥0 × Z[m]\I and E ⊆ {ϵ ∈ {±1}m : ϵ1 = 1} with E mod ±1 invariant under
flipping ϵi for i ∈ I.

Specifically, differentiating in ci leads to terms with ai 7→ ai−1 or (ai, |E|) 7→ (ai+2, |E|−2)
if i ∈ I, and to terms with bi 7→ bi − 2 or (bi, |E|) 7→ (bi + 1, |E| − 1) if i /∈ I. In each case,
applying ∂ci decreases mina,b,E(|a|+ |E|) by at most 1.

Now fix r ∈ Zm≥0 with |r| ≤ r. Then ∂rcF
∨ is a Q-linear combination of functions indexed

by triples (a, b, E) with |a| + |E| ≥ 2m−1 − r (and thus |E| ≥ 2m−1 − r or |a| ≥ 1). Each
such function must vanish at our original given point c, so ∂rcF

∨ = 0, as desired.
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Evaluating F∨ on L⊥ for special L’s

Fix L ∈ C(SSV). Proposition 6.3.10 has the following corollary:

Corollary 6.3.12. For L as above, we have (j2
m/2−1−1F∨)|L⊥ = 0.

Proof. By Observation 6.3.9, L corresponds to some permissible pairing J . For each part
J (k) = {i, j}, there are exactly two choices of signs (ϵi, ϵj) ∈ {±1}2—or only one choice if

1 ∈ J (k)—such that ϵiF
−1/2
i c

3/2
i + ϵjF

−1/2
j c

3/2
j vanishes over all c ∈ L⊥ ∩ Zm = RJ lying in

a given orthant of Rm. So given c ∈ L⊥ \ {0}, we can apply Proposition 6.3.10 “backwards”
with r := 2m/2−1 − 1. (Of course, L⊥ \ {0} is dense in L⊥, so the vanishing then extends to
all of L⊥.)

Thus we have explicitly verified the conclusion of Proposition 6.3.2. The next result shows
that in fact, F∨ generally does not vanish to higher order along L⊥.

Observation 6.3.13. Given L,J as above, fix c ∈ L⊥ ∩ Zm = RJ . For each k ∈ K, choose a

square root c(k)3/2 := F
−1/2
i c

3/2
i in Q (say). Then j2

m/2−1
F∨(c) = 0 if and only if there exist

l ≥ 1 distinct indices k1, . . . , kl ∈ K such that c(k1)
3/2 ± · · · ± c(kl)3/2 = 0 for some choice of

signs. Consequently, if j2
m/2−1

F∨(c) = 0, then c(k1)
3c(k2)

3 ∈ (Q×)2 ∪ {0} for some distinct
k1, k2 ∈ K.

Proof. For the equivalence, apply Proposition 6.3.10 “forwards” with r := 2m/2−1 (and then
“simplify” the resulting conclusion using the fact that J is a pairing). To obtain the final
conclusion, note that the condition c(k1)

3/2±· · ·± c(kl)3/2 = 0 implies the following, provided
l is minimal among all possible l’s (as we may certainly assume):

(1) If l = 1, then c(k)3 = 0 for some k ∈ K.

(2) If l = 2 is minimal, then c(k1)
3 = c(k2)

3 ∈ Q× for some distinct k1, k2 ∈ K.

(3) If l ≥ 3 is minimal, then c(kt)
3 ∈ Q× for all t ∈ [l], and by multi-quadratic field theory in

characteristic 0, the square classes c(k1)
3, . . . , c(kl)

3 mod (Q×)2 must all coincide. (More
precisely, given indices it ∈ J (kt) for t ∈ [l], we must have c(kt)

3 = F 2
itx

6
itd

3 ∈ d · (Q×)2

for some d, xit ∈ Q× such that Fi1x
3
i1
+ · · ·+ Filx

3
il
= 0. If J (k1), . . . ,J (kl) cover [m],

as must be the case if m = 6, then this would imply that [c] ∈ PL⊥ actually lies in the
image of γ(Q)—unlike most points of PL⊥.)

In each case, the claimed multiplicative relationship exists for some distinct k1, k2 ∈ K. This
completes the proof.

Remark 6.3.14. §6.3.2 is written in characteristic 0, but since F∨ ∈ Z[c], the results, with
their algebraic proofs, carry over to arbitrary fields of characteristic p ∤ (6m)!F1 · · ·Fm. Over
Fp, such extensions of Proposition 6.3.10 (in its geometric formulation), Corollary 6.3.12,
and (the equivalence part of) Observation 6.3.13 prove useful in the proof of the important
Lemma 6.4.1 stated below.

(Though unimportant for us over Fp, the other results of §6.3.2 also carry over. For
instance, regarding the field theory behind the last part of Observation 6.3.13: if K is a field
of characteristic p ∤ 2, and d1, . . . , dl ∈ K× are pairwise incongruent modulo (K×)2, then√
d1, . . . ,

√
dl ∈ K(

√
d1, . . . ,

√
dl) are linearly independent over K.)
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6.4 Some key ingredients

The following lemma is close in spirit to one direction of Corollary 5.1.31 (see also Ques-
tion 5.1.1). The proof in [Wan21d, §6] begins with a change of coordinates somewhat related
to van der Corput or Weyl differencing, or (probably) to certain blow-ups along m/2-planes;
see [Wan21d, Remark 6.5].

Lemma 6.4.1 ([Wan21d, Lemma 5.5]). Assume F is diagonal, with m ∈ {4, 6}. Fix

L ∈ C(SSV). Suppose c ∈ Λ⊥ is trivial, and p ∤ (j2m/2−1
F∨)(c) is a prime. Then

S̃c(p) = ϕ(p)p−1/2 +O(1).

Also, if we take J corresponding to L via Observation 6.3.9, then in the notation of Defini-
tion 6.3.7, c(k)3 ∈ Q is a well-defined p-adic unit for all k, and

S̃c(p
l) = ϕ(pl)p−l/2 ·

∏
k∈[m/2−1]

[
1 + χ

(
c(k)3c(k + 1)3

)]
≪ ϕ(pl)p−l/2

for all integers l ≥ 2, if we let χ(r) := ( r
p
). Both implied constants depend only on m.

To state the next ingredient, let S ⊆ {c ∈ Zm : F∨(c) = 0} be a homogeneous (i.e. in-
variant under scaling, so c ∈ S implies Z · c ⊆ S) subset of c’s with F∨(c) = 0. At several
technical points in the proof of Theorem 6.1.1 (see [Wan21d, §5]), the following lemma lets
us cleanly discard various contributions from sparse homogeneous sets S—when restricted to
c ̸= 0, at least. The proof (based on [HB98, pp. 688–689]) is rather awkward, due to a lack
of a deeper algebro-geometric theory for Sc when Vc is singular.

Lemma 6.4.2 ([Wan21d, Lemma 4.1]). Assume F is diagonal. If S ∩ [−C,C]m has size
O(Cm/2−δ+ϵ) for all C ≫ 1, then

Y −2
∑

c∈S\{0}

∑
n≥1

|Ic(n)| · n1−m/2 ·max
n⋆|n

n−1/2
⋆ |S̃c(n⋆)| ≪ϵ X

(m−δ)/2+ϵ

provided 4 ≤ m ≤ 6 and δ ≤ min((m+ 2)/4, (m− 1)/2).

Remark 6.4.3. We can “axiomatize” our proof of Theorem 6.1.1, in the hope of extending
Theorem 6.1.1 to general non-diagonal F (though a full diagnosis of the relevant issues would
seem to require algebraic geometry beyond the author’s current expertise). Assume

(1) m ≥ 4 is even, F has nonzero discriminant, and F∨ is unsurprising (in the sense of
Definition 6.1.7);

(2) (F,w) is clean in the sense of Definition 1.4.3;

(3) a version of Lemma 6.4.2, with the same hypotheses but with a modified conclusion

Xm

Y 2

∑
c∈S\{0}

∑
n≥1

(
1 +

X∥c∥
n

)1−m/2

ν1

(
∥c∥
X1/2

)
· n(1−m)/2|S̃c(n)| ≪ϵ X

(m−δ)/2+ϵ,

remains true, where ν1(⋆) is a fixed function decaying as OA(max(1, ⋆)−A); and
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(4) in Lemma 6.4.1, the formula for Sc(p) and upper bound for Sc(p
≥2) remain true,

provided p≫3,m,F 1 exceeds some threshold (only allowed to depend on 3,m, F ).

Then the conclusion of Theorem 6.1.1 still holds for F , as does that of Corollary 6.1.4 if
m ≥ 6. (Depending on the precise “Definition 6.1.7” in (1), a weaker version of (3) may
suffice.)

Remark 6.4.4. In Remark 6.4.3, we expect that (4) should be relatively routine to prove (if
true), but (1) and (3) may well require substantial new ideas.

6.5 Discussion of Manin-type conjectures

Let F, V, . . . be as in §3.1. The Hardy–Littlewood “randomness” (singular series) prediction
for F = 0 may fail, even when m = 6 (see Example 1.2.1).

Remark 6.5.1. The “randomness” prediction is expected to hold for m ≥ 7, since V is smooth.
(At least when m ≥ 8 and (F,w) is clean, [Hoo15] provides a conditional affirmative proof,
unconditional for m ≥ 9.) For singular cubics, however, failure can occur even when m ≥ 7;
see [BW19] for an interesting example when m = 8.

But every “randomness failure” should have a good excuse!
A plausible version of Manin’s conjecture (in a smoothed form) for C(V) ⊆ Am

Z says that
away from a certain special structured locus—namely the empty set if m ≥ 7, and the union
of all (linear) vector spaces L ⊆ C(V ) over Q of dimension ⌊m/2⌋ if m ≤ 6—one should have

NF,w(X)−
∑
x∈Zm

w(x/X) · 1x∈
⋃

L L
= (c+ oF,w;X→∞(1)) ·Xm−3(logX)r−1+1m=4

for a certain precise predicted constant c = cC(MP),w ∈ R and integer rank r ≥ 1.

Remark 6.5.2. If m ≥ 5, then r = 1 always—so the logX disappears—while cC(MP),w, the
“coned” (or “unsieved”) Manin–Peyre constant, always equals the Hardy–Littlewood constant
cHL,w. If m = 4, then typically, but not always, we have (r, cC(MP),w) = (1, cHL,w)—if one
interprets cHL,w generously as in [Jah14, Chapter II, Remarks 7.5–7.7].

In these cases, “Manin” differs from “Hardy–Littlewood” only in the special part. (But
sometimes when m = 4, Brauer–Manin obstructions or other phenomena lead to further
differences; e.g. loosely speaking, it is possible for “cHL,w ̸= 0 = cC(MP),w” or related behavior
to occur.)

For a general overview of “Manin”, see [Bom09, §2 and references within] or [Bro09,Jah14].
In general, “Manin” is imprecise regarding the special part (though nowadays there are precise,
but sometimes complicated, proposals available; see e.g. [LST19]). However, at least when
m = 6 and F = x31 + · · ·+ x36, the specific conjecture recorded above was—in essence—stated
first, and precisely, by Hooley [Hoo86a, Conjecture 2]. (See also [VW95, Appendix].)

Finally, we raise some further questions (about “more complicated” varieties) that one
also might (at first) study in the “c-restricted” sense of Theorem 6.1.1.

Example 6.5.3. It would be interesting to extend our analysis to m = 5, even just for
diagonal F . See [Bom09, §3] for a discussion of the potentially infinite family of lines on a
cubic threefold V ⊆ P4. Can one see these lines via V ∨ (cf. Proposition 6.3.2)?
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Now consider the following example (which I learned from a talk of Wooley) of a situation
in which (one expects that) nonlinear special subvarieties arise.

Example 6.5.4 ([Woo19]). Over boxes [−X,X]6 as X → ∞, one expects the 6-variable
quartic x41 + x42 + x43 = x44 + x45 + x46 to have not only a “purely probabilistic” source of ≍ X2

points (as X →∞), but also at least two relevant “special” sources of points:

(1) the “trivial” or “diagonal-type” linear locus

x1 ± x4 = x2 ± x5 = x3 ± x6 = 0 (and the obvious permutations)

contributing ≍ X3 points (as X →∞), as well as

(2) a secondary quadratic locus

x1 ± x2 ± x3 = x4 ± x5 ± x6 = (x21 + x22 + x23)± (x24 + x25 + x26) = 0

contributing ≍ X2 logX points (as X →∞).

(The underlying identity behind (2) is a4 + b4 + (a+ b)4 = 2(a2 + ab+ b2)2.)

Question 6.5.5. Can one detect (2) naturally via the delta method; or if not, why? Where
might the quadratic aspect naturally arise?

Remark 6.5.6. Question 5.1.1 may or may not be relevant to this question.

68



Chapter 7

Discriminating pointwise estimates

In Chapter 8, we would like to “remove the ϵ from §4.1” (and go beyond it), at least
conditionally. In the present chapter, we will summarize the estimates from [Wan21a]
designed in response to Remarks 4.1.1 and 4.1.3 towards Chapter 8. These estimates may well
be related to Igusa local zeta functions, model theory, o-minimality, real algebraic geometry, or
resolution of singularities (in mixed characteristic). But a consideration of such perspectives
will have to wait for now.

Let F, V, w, . . . be as in §3.1. At least for some pairs (F,w), we will present new uncondi-
tional pointwise bounds on the oscillatory integrals Ic(n) and exponential sums Sc(n) (see
Lemmas 7.1.4 and 7.2.3 below, respectively), and new conditional average bounds on Sc(n)
(see Conjecture 7.3.7 (B3) below, and the surrounding discussion).

7.1 Pointwise integral estimates

Definition 7.1.1. Call νd : Rd → R a decay weight if νd ∈ S(Rd) (i.e. if νd is Schwartz ). For
such νd, write νd ≥ 0 to mean im νd ⊆ R≥0, and νd > 0 to mean im νd ⊆ R>0.

Remark 7.1.2. We prefer the somewhat informal name “decay weight” because while the
regularity assumptions on ν are very convenient in [Wan21a] (see e.g. [Wan21a, Remark 8.4,
and the Hölder argument in §9]), they are not morally essential.

Definition 7.1.3. Define Jc,X(n) as in [Wan21a, Definition 3.43]; in our setting, Jc,X(n) =
Ic(n), but it will be helpful to keep the X-dependence explicit.

Given c ∈ Rm \ {0}, let c̃ := c/∥c∥, so that |F∨(c̃)|−1 ∈ [Θ(1),∞] measures the
“degeneracy” of (VR)c. In the following statement, we only need V to be smooth, not diagonal;
in fact, we only need V to be smooth along V (R), not V (C).

Lemma 7.1.4 ([Wan21a, Lemma 4.5]). Suppose (F,w) is clean in the sense of Definition 1.4.3.
Then for some decay weight νm > 0, fixed in terms of F,w, the following statements hold,
uniformly over (X, c, n) ∈ R>0 × Rm × R>0:

[J1] Modulus cutoff: Jc,X(n) = 0 holds unless n≪F,w Y .
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[J2] Integral bound: If we interpret c/|F∨(c̃)|−1 as 0 if c = 0, then we always have

|Jc,X(n)| ≪F,w min

[
1,

(
X∥c∥
n

)1−m/2
]
· νm

( c

X1/2

)3
· νm

(
Xc

n|F∨(c̃)|−1

)
.

[J3] Homogeneous dimensional analysis: For each integer j ≥ 0, the same bound holds for
|∂jlognJc,X(n)|, up to an OF,w,j(1) factor loss. (Here ∂logn := n · ∂n.)

[J4] Vertical variation: In [J3], we can replace Jc,X(n) with ∂
α
log cJc,X(n) (where we define

∂αlog c :=
∏

i∈[m] ∂
αi
log ci

for α ∈ Zm≥0), up to an additional multiplicative loss of

OF,w,α(1) ·
∏
i∈[m]

(
1 +

X|ci|
n

)αi

.

Remark 7.1.5. [HB96,HB98] proved most of Lemma 7.1.4 except for [J2]–[J4]’s “decay over
n≪ ∥Xc/|F∨(c̃)|−1∥”. (Hooley’s “pre-delta method” works [Hoo86b,Hoo97] have a similar
lacuna.)

Remark 7.1.6. Without the cleanliness assumption, similar but messier bounds in [J2]–[J4]
might still hold, at least for diagonal F (cf. Lemma 3.3.5), and plausibly—at least in a weaker
sense—even for general F (using the the o-minimal geometric framework of [BGZZK21]). It
would be interesting, and likely useful or enlightening, to find such bounds for smooth pairs
(F,w), say, even for diagonal F . However, in order to focus on the most essential issues in
this thesis, we have decided to keep the (qualitatively harmless) cleanliness assumption on
(F,w).

The requirement νm ∈ S(Rm) in Lemma 7.1.4 (via Definition 7.1.1) may seem unnaturally
restrictive at first glance. But in fact, the following (surely folklore-type) result shows that
when proving Lemma 7.1.4, it suffices (for [J2]–[J4]) to obtain “decay bounds” without regard
to regularity.

Proposition 7.1.7. Given an arbitrary function f : Rd → R≥0 such that f(a)≪b (1+∥a∥)−b
(for all b ∈ Z≥0), there must exist a decay weight νd > 0 with f ≤ νd.

Proof. See [Wan21a, Proposition 4.7].

Given Proposition 7.1.7, let us end by summarizing some of the main ideas behind
Lemma 7.1.4; see [Wan21a, Appendix B] for details.

Partial proof sketch for Lemma 7.1.4. [J1]: See Proposition 3.1.6.
[J3]: This is based on a recursive structure proven by an integration by parts argument

of [HB96] (using the homogeneity of F = 0).
[J2]: This involves a lot of stationary phase; the assumption that (F,w) is clean makes

the analysis much cleaner (allowing conceptual arguments based on gradient descent, for
instance). Let r := n/Y and v := Xc/n; then it suffices to bound, suitably uniformly over
Schwartz functions q, ϕ, the (q ◦ r, ϕ)r,v-integral∫

u∈R
du q(ru)

∫
x∈Rm

dx ϕ(x) e(uF (x)− v · x)︸ ︷︷ ︸
e(ψ(x))

,
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where Suppϕ ⊆ Suppw. If ∇ψ(x) = u∇F (x) − v ≫ |u| + ∥v∥ ≫ 1, then the principle of
non-stationary phase suffices. In many other ranges, the trivial bound suffices. The critical
range occurs when |u| ≍F,w ∥v∥ ≫ 1, with x ∈ Suppw restricted to ∥∇ψ(x)∥ ≤ δ|u|. In this
setting, fix u,v. Locally over x, there exists a unique s ≈ x with ∇ψ(s) = 0. In fact s is
Morse, i.e. if y = x − s then ψ(x) − ψ(s) ≈ uQs(y) ∈ Sym2(Rm)∨ looks non-degenerate.
Then, by stationary phase expansion,∫

x∈Rm

dx ϕ(x)e(ψ(x)) ≈ e(ψ(s)) ·
∫
y∈Rm

dy ϕ(s+ y)e(uQ(y))

≈ e(ψ(s)) · isgn(uQ)/2ϕ(s)

|2u|m/2|detQ|1/2
,

roughly speaking. (One heuristic for the growth rate |u|−m/2 as |u| → ∞ is to compare
the integral over y with the discrete Gauss-like sum |u|−m

∑
Zm∋uy≪u e(Q(uy)/u), which

one might expect to exhibit square-root cancellation over Zm ∋ uy ≪ u.) Hooley and
Heath-Brown integrated |u|−m/2 absolutely over |u| ≍ ∥v∥. But there is really a factor of
e(ψ(s)) in front, so by a calculation using non-stationary phase over |u| ≍ ∥v∥ (as s varies
with u), decay occurs if |F∨(ṽ)v| ≫ 1 is large.

7.2 Pointwise sum estimates

Assume F is diagonal and m ≥ 4. Write F = F1x
3
1 + · · ·+ Fmx

3
m, with F1, . . . , Fm ∈ Z \ {0}.

For technical convenience and discussion, we make the following definition:

Definition 7.2.1. For each nonempty set U ⊆ [m], choose F∨
U ∈ Q× · rad(F∨|cj=0, j /∈U) with

F∨
U ∈ Z[ci]i∈U .

Example 7.2.2. If F = x31+ · · ·+x3m, then F∨
{1,2} ∝

∏
(c

3/2
1 ± c

3/2
2 ) = c31− c32, while F∨

{1} ∝ c1.

(Cf. the factorization (6.1) in §6.3.2.)

Recall the general pointwise bound Proposition 3.3.3 on S̃c(n). By taking F∨(c) into
account, we can sometimes do better. For convenience, let F := (F1, . . . , Fm) and lcm(F ) :=
lcm(F1, . . . , Fm). The following is essentially [Wan21a, Lemma 4.11]:

Lemma 7.2.3. Assume lcm(F ) is cube-free.1 Up to scaling F∨, F∨
U once and for all, the

following vanishing and boundedness criteria hold uniformly over p:

(1) If c ∈ Zmp and vp(F
∨(c)) ≤ 1, then |S̃c(p)| ≪F 1.

(2) If c ∈ Zmp and vp(F
∨(c)) ≤ 1, then |S̃c(p

2)| ≪F 1.

(3) If c ∈ Zmp , then Sc(p
l) = 0 for all integers l ≥ 2 + vp(F

∨(c)).

(4) If U ⊆ [m] and |U | ≥ 2, then (2)–(3) hold for c ∈ ZUp × {0}[m]\U , even if we “replace”
F∨ with F∨

U ∈ Z[c|U ].
1This assumption can surely be removed with more work, but it is extremely mild anyways.
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(5) If i ∈ [m] and U := {i}, then (2)–(3) hold for c ∈ ZUp × {0}[m]\U , even if we “replace”
vp(F

∨(c)) with 3
2
vp(F

∨
U (ci))− 1

2
· 1l=3. (Here, when “modifying” (2), we let l := 2, so

that 1l=3 = 0. The 1l=3 only plays a role when “modifying” (3).)

Proof sketch. For (1), use Theorem 5.1.14(1) and [PS20, Theorem 1.1].
The proofs of (2)–(5), especially (3)–(5), are much more technical; the main ingredient

is Theorem 7.2.5 below, proven in [Wan21a, Appendix D]. Essentially one does a lot of
Hensel lifting, and needs to design a suitable “step-by-step ladder” into increasingly deep
“approximate singularities” of (VQp)c. Unfortunately, despite the simplicity of the idea, the
full argument involves many clumsy preparations (designed to align ourselves in an “efficient
direction” at each “ladder step”).

Remark 7.2.4. If F were quadratic (rather than cubic), with m ≥ 4 even, then Lemma 7.2.3(1)
would be false. This is because in general, if p ̸= 2, then every rank-r quadratic form Q/Fp
in s ≥ 3 variables has #Q(Fp) = #Ps−2(Fp)± p(s−r)/212|r · p(s−2)/2; cf. Proposition 5.1.21.

On a first reading of the following statement, it may help to focus on the special but
“general” case vp(lcm(6F )) = vp(c) = 0.

Theorem 7.2.5 ([Wan21a, Theorem D.1]). Fix o ∈ {0, 1}. Fix c ∈ Zmp and l ∈ Z. Assume
the following:

(1) vp(lcm(F )) ≤ 2;

(2) l ≥ 2 + 10vp(lcm(3F )) + 8vp(4) +
3
2
vp(c); and

(3) l − 2− vp(48) + o ≥ v℘(F (z)) for all tuples (λ,K, z, v℘) consisting of a unit λ ∈ Z×
p , a

finite extension K/Qp, a solution z ∈ Km to ∇F (z) = λc, and a valuation v℘ : K
× → Q

normalized by v℘(p) = vp(p) = 1.

Then 1o=0 · Sc(p
l) = 0. Also, 1(o,l)=(1,2) · |Sc(p

l)| ≤ 2m−1pl(1+m)/2.

Remark 7.2.6. Theorem 7.2.5 simplifies greatly when F is Pm−1
Fp

-smooth, i.e. p ∤ 3 lcm(F ). If

the simplified statement extends directly (without change) to general Pm−1
Fp

-smooth cubic
forms F/Zp, a different proof would be needed (maybe less explicit, and more geometric or
model-theoretic). It might then take even more work to find a reasonable statement (and
proof) for general Pm−1

Qp
-smooth cubic forms F/Zp.

Remark 7.2.7. If one strengthened the assumption “l ≥ v℘(F (z))+O(1)” to “l ≥ 2v℘(F (z))+
O(1)”, then Theorem 7.2.5 would likely be (i) much easier to prove: it might suffice to use
[Wan21a, Proposition D.21], with d = 1

2
l −O(1); and (ii) still satisfactory (for our purposes),

when complemented with suitable results for l ≤ O(1); but (iii) messier, and less enlightening.

Remark 7.2.8. One could likely adapt the proof of Theorem 7.2.5 (see [Wan21a, Appendix D])
to obtain a fairly efficient algorithm to compute (Sc(p

l))l≥2, at least when p ∤ 6 lcm(F ).2

Such work might also eventually help to improve, or at least clarify, existing bounds on Sc(p
l)

(e.g. those from [Hoo86b,Hoo97,HB98] that “resort to diagonality”), either for diagonal F or
in general.

2It would be nice to numerically verify Theorem 7.2.5 (or at least some of its proof ingredients).
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Remark 7.2.9. A similar result should hold without the assumption vp(lcm(F )) ≤ 2; see
[Wan21a, Remark D.12] for a possible first step towards such an extension (under the
present approach). In the same vein, there might be a variant of Theorem 7.2.5 suited for
weak-approximation questions. But for practical reasons, we have restricted ourselves to
Theorem 7.2.5.

The assumption vp(lcm(F )) ≤ 2 essentially lets us “cleanly anchor ourselves” to certain
“minimally degenerate” indices. The relevant “clean initial combinatorics” is captured by
Observation 7.2.11 below.

Definition 7.2.10. Given c ∈ Zmp , let Rmin := argmini∈[m] vp(c
3
i /Fi), and if m ∈ Rmin, then

let Umin := Rmin \ {m}.

Observation 7.2.11. Fix c ∈ Zmp . After permuting [m] if necessary, assume vp(c
3
1/F1) ≥ · · · ≥

vp(c
3
m/Fm). Now fix i, j ∈ [m] with i ≥ j. Then vp(lcm(F )) ≤ 2 implies

(1) vp(ci) ≥ vp(cj);

(2) Umin = {k ∈ [m− 1] : (vp(ck), vp(Fk)) = (vp(cm), vp(Fm))}; and

(3) if vp(ci)− vp(cj) ∈ {0} ∪ [2,∞] or 2 | vp(ci/Fi)− vp(cj/Fj), then vp(ci/Fi) ≥ vp(cj/Fj).

Proof. Suppose we write the integers 2 + vp(c
3
i /Fi) = 3vp(ci) + [2− vp(Fi)] in base 3, noting

that 2 − vp(Fi) ∈ {0, 1, 2}. Then we find that “vp(c
3
i /Fi) ≥ vp(c

3
j/Fj)” is equivalent to

“(vp(ci),−vp(Fi)) ≥ (vp(cj),−vp(Fj)) under the lexicographic ordering of Z2”.
Now fix i, j with i ≥ j. The lexicographic ordering immediately implies (1)–(2), as well as

the case “vp(ci) = vp(cj)” of (3). Now assume vp(ci) ̸= vp(cj). Then vp(ci/Fi)− vp(cj/Fj) ≥
vp(ci)− vp(cj)− 2 ≥ −1 + 1vp(ci)≥vp(cj)+2, which yields the remaining cases of (3).

7.3 Conditional average sum estimates

Let us state some quantitative forms of the Square-free Sieve Conjecture (cf. [Mil04, p. 956]
and [Gra98,Poo03,Bha14])—restricted to a certain range (specified in terms of a real exponent
b ≥ 0)—regarding “unlikely divisors” of certain polynomial outputs. Function field analogs of
these statements (for arbitrary b ≥ 0) are, at least up to literature gaps, known unconditionally;
see [Poo03, Lemma 7.1] for a general qualitative statement for multivariate polynomials, and
[Lan15, Propositions 3.2 and 3.3] for a quantification for univariate polynomials (which can
surely be extended to multivariate polynomials by adapting [Bha14, Theorem 3.3] to the
function field setting).

Conjecture 7.3.1 (SFSCp,b). There exists an absolute δ > 0 such that

#{c ∈ Zm ∩ [−Z,Z]m : ∃ a prime p ∈ Z ∩ [P, 2P ] with p2 | F∨(c)} ≪F∨ ZmP−δ

holds uniformly over Z ≥ 1 and P ≤ Zb/2.

Conjecture 7.3.2 (SFSCq,b). There exists an absolute δ > 0 such that

#{c ∈ Zm ∩ [−Z,Z]m : ∃ a square-full q ∈ Z ∩ [Q, 2Q] with q | F∨(c)} ≪F∨ ZmQ−δ

holds uniformly over Z ≥ 1 and Q ≤ Zb.
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Remark 7.3.3. Note that (SFSCp,b) is stable under scaling F∨. Also, if (SFSCp,b) holds for
P ≤ Zb/2, then it extends (up to modified implied constant) to any fixed range of the form
P ≪ Zb/2. Similar remarks hold for (SFSCq,b).

Remark 7.3.4. It can (probably) be shown that (SFSCp,b) implies (SFSCq,b), up to changing
δ. The point is that (in the difficult case b > 1) a square-full integer q ∈ [Z,Zb] is divisible
by a square q′ ∈ [Z2/3, Zb], which in turn either has a prime-squared factor p2 ∈ [Z1/3, Zb], or
a square factor d2 ∈ [Z1/3, Z2/3] (with d composite).

In view of Lemma 7.2.3(4)–(5), it is also natural to consider the following augmented
versions of (SFSCp,b) and (SFSCq,b).

Conjecture 7.3.5 (SFSCp,b+). If U ⊆ [m] is nonempty, then the analog of (SFSCp,b) holds
for F∨

U over (ci)i∈U ∈ ZU ∩ [−Z,Z]U . In particular, (SFSCp,b) holds.

Conjecture 7.3.6 (SFSCq,b+). If U ⊆ [m] is nonempty, then the analog of (SFSCq,b) holds
for F∨

U over (ci)i∈U ∈ ZU ∩ [−Z,Z]U . In particular, (SFSCq,b) holds.

Proposition 3.3.3, Lemma 7.2.3, and (SFSCq,6+) together imply the following statement,
at least when F is diagonal and lcm(F ) is cube-free:

Conjecture 7.3.7 (B3). Let F/Z be a Pm−1
Q -smooth cubic form in m ≥ 4 variables. Restrict

to F∨(c) ̸= 0. Then there exists an absolute δ > 0 such that uniformly over Z > 0 and
N ≤ Z3, we have

∑′

c∈Zm

1∥c∥≤Z

 ∑
nc∈[N,2N ]

|S̃c(nc)|
N1/2

· 1nc|F∨(c)∞

2

≪F Z
mN−δ.

For the (conditional) proof, see [Wan21a, Lemma 7.43]; in certain key ranges, the N -power
saving in (B3) comes from Lemma 7.2.3 and (SFSCq,6+). For a discussion of our reliance on
(SFSCq,6+), see e.g. Remark 7.3.13 below.

Remark 7.3.8. “B” refers to the “badness” of nc and Sc(nc); cf. §4.1’s [B2’], as discussed
in Remark 4.1.3. For each fixed c, the sum over nc is quite sparse, so there is not much
difference between

∑
and max, but for small N the statement with

∑
rather than max is

slightly stronger.

Remark 7.3.9. If F were quadratic, then (B3) would be false in general. One way to see this
is to take N to be a small power of Z, restrict nc to be prime, and apply Remark 7.2.4.

Remark 7.3.10. For us, the second moment—as stated above—is most convenient.3 However,
the first moment—or anything higher—could still be useful. Also note that while a bound of
Zm+ϵN ϵ (in place of ZmN−δ in (B3)) follows from Proposition 3.3.3 for diagonal F (cf. [B2’]
in §4.1), no comparable result is known for general F (a significant source of difficulty in
work such as [Hoo14]); see the discussion in [Wan21c, Appendix A] for more details.

3Note that once we have a power saving for the second moment, we also have—due to the trivial bound
on Sc—a power saving for all moments with exponent in [2, 2 + Ω(δ)].
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Remark 7.3.11. It would be good to understand the restriction N ≤ Z3 at a deeper level; is
it really needed? Our conditional proof of (B3) morally only needs the restriction over the
locus c1 · · · cm = 0. (However, in the proof, the restriction N ≤ Z3 does help at least at a
technical level, by letting us get away with the limited range of (SFSCq,6+).) The full truth
seems unclear.

Remark 7.3.12. In principle, in our applications of (B3), it would probably be OK to “drop”

the absolute value from |S̃c(nc)|—provided we assume the corresponding statement holds for
all sub-intervals of [N, 2N ], and not just [N, 2N ] itself.

Now we discuss some possible approaches to weakening the hypothesis (SFSCq,6+).

Remark 7.3.13. I expect that if instead of Lemma 7.2.3(1), one uses Theorem 5.1.14(2), then a
quantitative forms of Ekedahl’s geometric sieve (cf. [Bha14, Theorem 3.3]) would allow one to
replace the ingredient (SFSCq,6+) with (SFSCq,3+) (and thus with (SFSCp,3+)). Furthermore,
if one restricts (B3) to F∨(c) · c1 · · · cm ̸= 0 and not just F∨(c) ̸= 0, then I believe (SFSCq,6)
(and thus (SFSCq,3) or (SFSCp,3)) would suffice; in fact, this further-restricted version of
(B3), say (B3G), would suffice for the main goals of Chapter 8.

Remark 7.3.14. Going beyond Remark 7.3.13, say one uses Theorem 7.2.5 (or any improvement
thereof) in place of Lemma 7.2.3(2)–(3). Then ultimately, one might be left with problems
such as Problem 7.3.15 below (to give a toy example).

Problem 7.3.15. Show that uniformly over Z ≥ 1 and Q ≤ Z3, the count

#{c≪ Z : ∃ p ≍ Q1/2 and (x, λ) ∈ Zmp × Z×
p with ∇F (x) = λc and p2 | F (x)}

is ≪F Z
mQ−δ. (Here c denotes a tuple in Zm, and p denotes a prime.)

Remark 7.3.16. While a direct use of Theorem 7.2.5 (with (o, l) = (1, 2)) to control large

values of S̃c(p
2) only “guarantees” x ∈ Qm

p , a closer inspection of the proof of Theorem 7.2.5
shows, under mild hypotheses, that Sc(p

2) = 0 unless there exists (x, λ) ∈ Zmp × Z×
p with

∇F (x) ≡ λc mod p—a condition not so far from the toy problem’s condition ∇F (x) = λc.
(With more care when p | c1 · · · cm, we could state a more precise toy problem—but at least
when Q≫ Z2 is sufficiently large, this would not make a difference.)

Remark 7.3.17. The toy problem above vaguely resembles [Kow21], but with an additional
“multi-quadratic cover” aspect due to ∇F . Optimistically, one might try to combine [Kow21]
with techniques for “Weyl sums for square roots” developed by [DFI12] and others.

Remark 7.3.18. As another approach to simplifying the work or input required, one might try
combining Jutila’s “approximate circle method” with [DFI93,HB96], in the hope of “reducing”
the delta method to “simple” moduli n of our choice (e.g. square-free n coprime to 6F1 · · ·Fm).
This may or may not be possible; the inherent “error bound” in Jutila’s circle method may
or may not be too large for our purposes in [Wan21d,Wan21a].
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Chapter 8

Using the Ratios Conjectures

8.1 Introduction

Let F, V, w, . . . be as in §3.1. Assume m = 6 and F = x31 + · · · + x36, as in §4.1. Under
certain standard number-theoretic hypotheses, the paper [Wan21a]—to be summarized in the
present chapter—“removes the ϵ from §4.1” (and goes beyond it, proving HLH when (F,w)
is clean); this has statistical implications for sums of three cubes, by Observation 2.1.3 and
Theorem 2.1.8. The following hypotheses suffice:

(1) some Langlands-type conjectures (applied to certain Galois representations “coming
from geometry”), plus GRH (for certain automorphic L-functions);

(2) some RMT-type predictions (based on [CFZ08, §5.1, (5.6)] and [SST16])—namely the
L-function Ratios Conjectures over the multi-parameter geometric family c 7→ L(s, Vc)
(with L(s, Vc) defined as in Example 3.2.10 and §4.1);

(3) a quantitative form of the Square-free Sieve Conjecture (see §7.3); and

(4) the constancy of the local Hasse–Weil Euler factors Lp(s, Vc), when c is restricted to a
p-adic residue class of modulus p · gcd(F∨(c)O(1), p∞)—in the spirit of Krasner’s lemma
(cf. the general but possibly “ineffective” results of [Kis99]).

Remark 8.1.1. Under the current state of knowledge, we expect (1)–(2) to be the most serious
hypotheses; (4) to be provable, and thus removable, by a suitable expert; and (3) to be
somewhere in between.

In §8.2, we will state more precise hypotheses, especially regarding (1)–(2). For now, we
make six (inessential) remarks on hypotheses (1)–(4).

Remark 8.1.2. Very roughly, to improve on §4.1, the paper [Wan21a] “factors” certain key
sums into pieces addressed by (2), from the world of “RMT-based heuristics”, or by (3), from
the world of “unlikely divisors” (see especially Conjecture 7.3.7 (B3) and the surrounding
discussion).

Remark 8.1.3. It might be worthwhile to find a suitable “elementary” replacement for the
Ratios Conjectures whose formulation would not require analytic continuation or GRH. But
[CFZ08, §5.1, (5.6)] itself is stated directly in terms of L and 1/L.
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Remark 8.1.4. In (1)—unlike in [Hoo86b,Hoo97,HB98]’s “Hypothesis HW”—we need to
know not just about L(s, Vc) as c varies, but also about L(s, V ), and about L(s, Vc,

∧2) and
its poles as c varies. For us, such polar information comes from Langlands, via standard
ideas of a representation-theoretic flavor.

Remark 8.1.5. In (2), we take the family of Vc’s over {c ∈ Z6 : F∨(c) ̸= 0}, indexed by very
clean level sets ∥c∥ = ∗ for the “ϵ-removal” result, but later indexed with an additional
“adelic perturbation” for the HLH result.

Remark 8.1.6. In work towards “geometric” RMT conjectures, [Mil04] used a similar—but
more qualitative—version of (3), for sieve-theoretic purposes different from ours. That
said, it might be interesting to interpret [DFI93,HB96]’s delta method in a sieve-theoretic
framework (cf. the fact that 0 is the only integer divisible by arbitrarily large primes; also
cf. the “philosophy of sieves and assemblers” suggested by [MM21]).

Remark 8.1.7. (4) is a technical statement that we use first to prove the existence of certain
local averages (such as those required for the “recipe for the Ratios Conjectures”), and second
to pacify certain “small bad error moduli” for HLH.

8.2 Precise statements of our main hypotheses

(Recall that we are assuming F = x31+· · ·+x36. But in general, for F with nonzero discriminant,
almost all of what we say in §8.2 will apply if m = 6; most of it will apply if m ≥ 3 and 2 | m;
and some of it will apply if m ≥ 3 and 2 ∤ m.)

Having already stated the necessary forms of the Square-free Sieve Conjecture (SFSC) in
§7.3, it remains to discuss our other hypotheses, which involve certain “geometric” L-functions.
This is technical, but the following three comments may help.

(1) Geometric L-functions capture “the horizontal variation of local behavior” (i.e. variation
in p), in a way susceptible to the familiar formalism of representation theory.

(2) At least at “good” primes p, one can compute all local data in question cleanly and
concretely in terms of certain Frobenius eigenvalues. (See e.g. Definition 3.2.7 for
a friendly definition of the specific L-functions L(s, Vc) at “good” primes. For the
connection to Definition 8.2.1 below, see Observation 8.2.14 near p. 80.)

(3) At least morally, the L-functions relevant to us are no more complicated than the
L-functions L(s, A) of abelian varieties A, and various tensor-square L-functions thereof.
Therefore, familiarity with fairly well-known Galois representations (e.g. ℓ-adic Tate
modules VℓA := TℓA⊗Q, and various tensor squares thereof) basically suffices.

Definition 8.2.1 (Cf. [Tay04]). Fix, once and for all, a prime ℓ0 and an inclusion ι : Qℓ0 ↪→C.
Let ρ : GQ → GL(M) denote an ℓ0-adic representation of GQ.

Suppose ρ arises from geometry, in the “arbitrary subquotient” sense of [Tay04, pp. 79–80,
the two paragraphs before Conjecture 1.1 (Fontaine-Mazur)]. Then ρ is de Rham at ℓ0, and
pure of some weight w ∈ Z, so [Tay04, §2, pp. 85–86] defines (among other invariants of ρ)

(1) a global conductor q(ρ) and root number ϵ(ρ) := ϵ(ιρ), and
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(2) an algebraically normalized local factor Lv,Taylor(s, ιρ) at each place v ≤ ∞.

Now define the analytically normalized local factors Lv(s, ρ) := Lv,Taylor(s+w/2, ιρ). Globally,
set L(s, ρ) :=

∏
p<∞ Lp(s, ρ) and Λ := L∞L. And for each prime p, let {α̃ρ,j(p)}j :=

{p−w/2αρ,j(p)}j denote the multiset of normalized eigenvalues of geometric Frobenius on the
(≤ dim(M)-dimensional) representation of WQp/IQp defining Lp(s, ρ). Finally, let λ̃ρ(n) :=
[ns]L(s, ρ) denote the nth coefficient of L(s, ρ) for n ≥ 1.

For a smooth projective variety Y over a field k, letHd(Y ) := Hd(Yk,Qℓ0); for an embedded
smooth projective variety Z ⊆ PNk , let Hd

diff(Z) := Hd(Z)/Hd(PNk ). When M := Hd
diff(Z) for

a smooth projective complete intersection Z ⊆ Pr+dQ of dimension d ≥ 0 and codimension
r ≥ 1, we abbreviate q(M), L(s,M), . . . as q(Z), L(s, Z), . . . . (Here if 2 ∤ d, then in fact
Hd

diff(Z) = Hd(Z); but when 2 | d, the “diff” is important.)

Remark 8.2.2. Here each Lp(s, ρ) =
∏

j(1− α̃ρ,j(p)p−s)−1 has some “degree” #{j} ≤ dimM .
Purity means “#{j} = dimM and |α̃ρ,j(p)| = 1 ∀j” holds for all p outside a finite set.

Remark 8.2.3. Say Z/Q is a smooth projective complete intersection of dimension d ≥ 0.
Then only the middle cohomology Hd(Z)—or rather, only the “primitive quotient” Hd

diff(Z)
thereof—is interesting. This justifies the definition L(s, Z) := L(s,M) above.

Now say d ≥ 1. Then Hd(Z) = Hd(P1+d)⊕ ker(L : Hd(Z)→ Hd+2(Z)), where L denotes
the Lefschetz operator. So Hd

diff(Z)
∼= ker(L). But this is almost always false for d = 0. So

even though d ≥ 1 always for us, we prefer to define Hd
diff(Z) as in Definition 8.2.1.

Definition 8.2.4. Fix c ∈ Zm with F∨(c) ̸= 0. Then Vc is a smooth projective complete
intersection in Pm−1

Q of dimension m∗ := m− 3. So in particular, Definition 8.2.1 fully defines

L(s, Vc). For n ≥ 1, now let λ̃c(n) := [ns]L(s, Vc) and µc(n) := [ns]L(s, Vc)
−1. And for all

p, j, let α̃c,j(p) := α̃Mc,j(p), where Mc := Hm∗
diff(Vc).

Remark 8.2.5. A close reading of [Tay04, §§1–2] (keeping in mind that certain geometric facts
are truly of local origin, even though [Tay04] often “starts” globally) shows that given n, one
can define λ̃c(n), µc(n) on all of {c ∈

∏
p|n Zmp : F∨(c) ̸= 0}. We could probably avoid using

extended definitions like these, but they are convenient in some local calculations.

After (SFSC), our second technical hypothesis, Conjecture 8.2.6, is an “effective Krasner-
type lemma” (an “ineffective” version likely already being known by [Kis99]).

Conjecture 8.2.6 (EKL). Let S := {c ∈ Ẑm : F∨(c) ̸= 0}. Then there exists a nonzero
homogeneous polynomial H ∈ Z[c] such that λ̃c(n) is constant on the fibers of the map

Z≥1 × S → Z≥1 × Z≥0 × 2Ẑ given by

(n, c) 7→ (n, r, c+ rad(n)rẐ), where r := (n∞, H(c)) ∈ Z≥0.

Remark 8.2.7. The point is that Lp(s, Vc) should morally be computable from something like
a “local minimal model” of (Vc)Qp . At least for elliptic curves in Weierstrass form, vp(∆)
controls minimality, and Lp is determined by the coefficients modulo p of a minimal model.

Question 8.2.8. Does (EKL) hold with H = ΘF (1) · F∨ (for a suitable constant ΘF (1))?
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Now we move on to our seemingly more fundamental hypotheses—those involving (for the
most part) global aspects of L-functions. As suggested in Remark 3.2.12, we will phrase these
hypotheses in terms of automorphic representations π of GL• over Q. Doing so is technical,
but the following remark (partly based on the survey [FPRS19]) may help.

Remark 8.2.9. We will only work with cuspidal π’s (on GL• over Q), or more generally,
isobaric π’s. These π’s have well-defined L-functions L(s, π), and good formal properties
(due to Rankin, Selberg, Langlands, Godement, Jacquet, Shalika, and others):

(1) If π is cuspidal, then L(s, π) is primitive in the sense of [FPRS19, Lemma 2.4], and
has certain standard analytic properties [FPRS19, Theorem 3.1]. Furthermore, the
following statements hold:

(a) Given a cuspidal π, let ω : Ẑ× × R>0 → C× denote the (continuous) central
character of π. Then the critical line of L(s, π) is ℜ(s) = 1/2 if and only if ω is
unitary (in which case one might informally say “π is of weight 0”).

(b) In the setting of (a), suppose ω is unitary. Say π is on GLd, let q(π) be the
conductor of π, and write Lp(s, π) =

∏
1≤j≤d(1− απ,j(p)p−s)−1 for each p ∤ q(π).

Then the number
∏

1≤j≤d απ,j(p) ∈ C is algebraic for all p ∤ q(π) if and only if ω is
a Dirichlet character (i.e. ω is of finite order ; i.e. ω|R>0 = 1; i.e. π is balanced in
the sense of [FPRS19, §2.2]).

(2) For each isobaric π, there is a unique multiset {π1, . . . , πr}, consisting of cuspidals, such
that L(s, π) = L(s, π1) · · ·L(s, πr). We call the πi’s cuspidal constituents of π.

(3) Strong multiplicity one (a strengthening of (2)’s “uniqueness statement”): If π, π′ are
isobaric, and Lp(s, π) = Lp(s, π

′) for all but finitely many primes p, then L(s, π) =
L(s, π′)—or equivalently, {π1, . . . , πr} = {π′

1, . . . , π
′
r′}, in the notation of (2).

(4) Fix an isobaric π, say corresponding to {π1, . . . , πr} in the notation of (2). Suppose
each πi has unitary central character. Then L(s, π) has real coefficients if and only if π
is self-dual (i.e. L(s, π) = L(s, π∨); i.e. {π1, . . . , πr} = {π∨

1 , . . . , π
∨
r }).

(Confusingly, isobaric π’s are always irreducible as automorphic representations. So in (1) it
is indeed better to use the adjective “primitive” than “irreducible”.)

For our automorphic purposes, the following convenient definition (though not as precise
as the “algebraicity” and “arithmeticity” definitions of Clozel and Buzzard–Gee) will suffice:

Definition 8.2.10. Call an isobaric π nice if each cuspidal constituent of π has unitary,
finite-order central character.

Using Definition 8.2.10, we can now state Conjecture 8.2.11, which cleanly extends
Hypothesis HW (or rather (1) in Remark 3.2.11) from L(s, Vc) to a host of related L-functions.

Conjecture 8.2.11 (HW2). Fix c ∈ Zm with F∨(c) ̸= 0. Let Mc := Hm∗
diff(Vc) and MV :=

H1+m∗
diff (V ). Now let M denote one of the representations

Mc,MV ,Mc ∧Mc, Sym
2Mc,Mc ⊗Mc,Mc ⊗M∨

c .

Let S denote disc(F ) or F∨(c), according as M =MV or M ̸=MV . Then
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(a) M itself arises from geometry (pure of weight m∗, 1 +m∗, or 2m∗ according as M is
Mc, MV , or neither), with dimM = Om(1) and q(M) | rad(S)Om(1) | SOm(1);

(b) the gamma factor L∞(s,M) lies in a finite set depending only on m;

(c) there exists a nice isobaric πM on GLdimM over Q such that (i) Lv(s,M) = Lv(s, πM)
at all places v ≤ ∞, and (ii) (q(M), ϵ(M)) = (q(πM), ϵ(πM));

(d) each cuspidal constituent of πM satisfies the Generalized Ramanujan Conjectures
(GRC)—whence |α̃M,j(p)| ≤ 1 for all p, j, and L∞(s,M) is holomorphic on {ℜ(s) > 0};
and

(e) L(s, πM) satisfies the Grand Riemann Hypothesis (GRH).

Remark 8.2.12. Here “HW” stands for “Hasse–Weil” (cf. “Hypothesis HW”). The “2” refers
to the “second-order” nature in which L(s, V ), L(s, Vc,

∧2) will appear later. Here and later,
we let L(s, Vc,

∧2) := L(s,Mc ∧Mc), and similarly define L(s, Vc, Sym
2), L(s, Vc,

⊗2), . . . .

Remark 8.2.13. Some of the “conjectures” above (excluding GRH) may be known in some
generality or specificity; see §8.5.1 (which begins near p. 91) for some discussion.

Observation 8.2.14. In the notation of (HW2), fix a prime p ∤ ℓ0S. Then the multiset
{αM,j(ρ)}j coincides with the multiset of eigenvalues of geometric Frobenius on “the obvious
GFp-representationMFp ∈ {Hm∗

diff((Vc)Fp), . . . } corresponding to M”. (For proof, use smooth

proper base change—and some linear algebra on
∧2, Sym2,−⊗−.)

In particular, this explains the connection between the (full, sophisticated) Definition 8.2.4
and the (partial, simpler) Definition 3.2.7 for L(s, Vc).

Observation 8.2.15. Assume (HW2), and fix c. Then L(s, Vc,
⊗2) is (isobaric) automorphic,

so by strong multiplicity one (Remark 8.2.9(3)), the Rankin–Selberg L-function L(s, πMc ,
⊗2)

is automorphic, and equal to L(s, Vc,
⊗2). Similar comments apply to L(s, πMc ,

∧2), . . . .
In particular, L(s, πMc × π∨

Mc
)—which has a pole at s = 1 for general reasons—must be

(isobaric) automorphic, and must satisfy GRH. So RH for ζ(s) must hold, under (HW2).

For convenience, we now refine (HW2) to a conjecture more specific to our family of Mc’s.
From here to the end of §8.2, it will be important that 2 | m.

Conjecture 8.2.16 (HWSp). Conjecture (HW2) holds, and each πM in (HW2) is self-dual.
Furthermore, for each c in (HW2), there exists a nice isobaric ϕc,2 over Q such that

(a) Lv(s, Vc,
∧2) = ζv(s)Lv(s, ϕc,2) holds at all places v ≤ ∞, and

(b) the conductors and ϵ-factors match accordingly.

Remark 8.2.17. Fix c, and say Mc is irreducible. (Under Langlands-type conjectures and
GRH, one can prove that Mc is typically irreducible. See also Proposition A.2.1 for some
heuristic evidence for a stronger statement.) Then Schur’s lemma and Poincaré duality (and
the fact that m∗ = m− 3 is odd) suggest (via Langlands-type conjectures) that the putative
πMc in (HW2) should be cuspidal self-dual symplectic as defined on [SST16, p. 533], and in
particular that L(1, πMc ,

∧2) =∞. Hence the “Sp” in “HWSp”.
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It is then no surprise1 that under (HW2), say, the homogeneity type of the family
c 7→ L(s, Vc) is “symplectic” (in the sense of [SST16]); see §8.5.2 (which begins near p. 95)
for details. Under [SST16, Universality Conjecture], one then expects the symmetry type
to be “orthogonal”—a point that we will clarify in due time (even though the RMT-based
conjectures we use will come mostly from [CFZ08] rather than [SST16]).

See §8.5.1 for a more thorough discussion of (HW2) and (HWSp), and where they come
from. But most directly relevant to us are the analytic estimates (in Remark 8.5.3) implied by
(HW2) and (HWSp), leading via [IK04, Perron’s formula (5.111)] to pointwise “square-root
cancellation up to ϵ” bounds (such as (3) in Remark 3.2.11). Such bounds “barely” fail us.
Fortunately, there exist more precise mean-value predictions of RMT type. For some (but
not all) of our purposes here and elsewhere, we can work with smooth weights; to this end,
recall Definition 7.1.1.

Let πc := πMc . In §8.3.3 (which begins near p. 88), we will explain—assuming (HW2)
and (EKL)—how the “recipe” (or “heuristic”) of [CFZ08], when interpreted in the general
framework of [SST16, pp. 534–535, Geometric Families and Remark (i)], leads to the following
clean two-part “Ratios Conjecture” (and to the slightly messier “Ratios Conjecture” (RA1)
stated later below as Conjecture 8.2.28):

Conjecture 8.2.18 (Cf. [CFZ08, §5.1, (5.6)]). Restrict to F∨(c) ̸= 0, let s := σ + it, and
assume (HW2). Fix a decay weight νm ≥ 0. Then the following hold:

(R1) Fix σ > 1/2. Then uniformly over Z ≥ 1 and |t| ≤ Zℏ, we have∑′

c∈Zm

νm

( c
Z

)
· 1

L(s, πc)

= Oνm,σ((Z
m)1−δ) +

∑′

c∈Zm

νm

( c
Z

)
· ζ(2s)L(s+ 1/2, V )AF (s),

for some absolute ℏ, δ > 0 independent of σ.

(R2) Fix σ1, σ2 > 1/2. Then uniformly over Z ≥ 1 and ∥t∥ ≤ Zℏ, we have∑′

c∈Zm

νm

( c
Z

)
· 1

L(s1, πc)L(s2, πc)

= Oνm,σ((Z
m)1−δ) +

∑′

c∈Zm

νm

( c
Z

)
· AF,2(s)ζ(s1 + s2)

∏
j∈[2]

ζ(2sj)L(sj + 1/2, V ),

for some absolute ℏ, δ > 0 independent of σ.

Here AF (s), AF,2(s) are certain Euler products (defined in §8.3.3, in terms of F ), absolutely
convergent on the regions ℜ(s),ℜ(s) ≥ 1/2− δ′, respectively, for some absolute δ′ > 0.

Before proceeding, we make four remarks on Conjecture 8.2.18.

Remark 8.2.19. The letter “R” signifies “Random Matrix Theory” or “Ratios Conjecture”
(or “recipe” thereof).

1since we are working over a number field (rather than a global function field)
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Remark 8.2.20. Following [CS07, (2.11a)–(2.11b)], one could require σ,σ ≤ 1/2 + δ′, and
restrict the “absolute convergence” statement to ℜ(s),ℜ(s) ∈ [1/2− δ′, 1/2 + δ′], to be safe
(see [CS07, Remark 2.3]). Our applications would certainly permit that. But since our “ratios”
only involve 1/L and not L, the present formulation of Conjecture 8.2.18 should be OK.

Remark 8.2.21. We restrict t to [−Zℏ, Zℏ] to (comfortably) respect the constraint [CS07,
(2.11c)] on “vertical shifts”. We could alternatively allow arbitrary t ∈ R, but only after
including a sufficiently large factor of the form (1 + |t|)O(1) in the error terms of (R1)–(R2).

(Here we are being careful, but it might actually be possible to relax [CS07, (2.11c)] to
allow t ∈ [−ZO(1), ZO(1)]; cf. [BC20, p. 4, the sentence before Conjecture 2].)

Remark 8.2.22. [CFZ08, §5.1, (5.6)] has a “square-root error term”—too much to ask for
in general.2 However, all theoretical and numerical data so far suggest power-saving error
terms—and an arbitrary power saving is all we need (and all we assume).

Actually, to prove NF (X)≪ X3, we do not need (R2) itself, but only the weaker statement
(R2’) below. However, we need to keep uniformity in mind when integrating against certain
varying weights f(s). So we first make a definition:

Definition 8.2.23. Let f : {ℜ(s) ∈ (1/5, 6/5)} → C be Schwartz on vertical strips. Given
Z, ν1, ℏ, suppose |f(s)| ≤ ν1(t) for all σ ∈ (1/5, 6/5) and |t| ≥ Zℏ. Also let MI(f) :=
supσ∈I∥f(σ + it)∥L1(t∈R) and suppose M(1/5,6/5)(f) <∞. Then we say f is (Z, ν1, ℏ)-good.

Conjecture 8.2.24 (R2’). Assume (HW2). Then there exist absolute constants ℏ, δ > 0
such that if ν1, νm ≥ 0 are decay weights and f(s) is an (Z, ν1, ℏ)-good holomorphic function,
then uniformly over any given range of the form 1≪ N ≪ Z3, we have

∑′

c∈Zm

νm

( c
Z

) ∣∣∣∣∫
(σ)

ds
ζ(2s)−1L(s+ 1/2, V )−1

L(s, πc)
· f(s)N s

∣∣∣∣2 ≪ν1,νm M (2)(f) · ZmN

for all σ > 1/2, where the implied constant on the right-hand side depends only on ν1, νm.
Here M (2)(f) := [1 +M{1/2}(f

2) +M[1/2−δ,1/2+δ](s
3f(s))]2.

Remark 8.2.25. In [Wan21a, §7.4], we prove (R2’) assuming (HW2) and (R2).

Remark 8.2.26. Sometimes, “sharp-up-to-constant upper bounds” like (R2’) can be “easier”
than true “leading-order asymptotics” like (R1)–(R2). See e.g. [Har13].

On the other hand, (R1) itself does not suffice to fully establish HLH (in our setting).
Rather, we need a slight “adelic perturbation” (RAZ1) of (R1). To state the Ratios Conjecture
(RAZ1), we first make a convenient definition:

Definition 8.2.27. Let r− := min(r, 0) and r+ := max(r, 0) for every r ∈ R. Then given
Z ∈ Rm, we let B(Z) := [(Z1)−, (Z1)+]× · · · × [(Zm)−, (Zm)+].

2See [DW21, Theorem 1.2] for an unconditional example in the setting of [CFK+05]. See also [CFLS22, first
two sentences of the paragraph before Theorem 1.4, as σ → 0+] for a presumably unconditional example in
the setting of one-level densities.
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Conjecture 8.2.28 (RAZ1, or RA1). Fix σ > 1/2. Then for some absolute ℏ, δ > 0
independent of σ, we have∑′

c≡a mod n0

1c∈B(Z) ·
1

L(s, πc)
= Oσ(|F|1−δ) +

∑′

c≡a mod n0

1c∈B(Z) · ζ(2s)L(s+ 1/2, V )Aa,n0

F (s),

uniformly over |t|, n0 ≤ Zℏ and (a,Z) ∈ Zm × Rm with |Z1|, . . . , |Zm| ∈ [Z1−ℏ, Z]. Here
Aa,n0

F (s) is a certain Euler product (defined in §8.3.3, in terms of F,a, n0), absolutely
convergent on {ℜ(s) ≥ 1/2− δ′} for some absolute δ′ > 0.

Remark 8.2.29. Note that the “prediction” (i.e. the “right-hand side”) is sensitive to both the
archimedean data “Z” and the non-archimedean data “a mod n0”. Furthermore, in (RA1),
we forbid Z from being too lopsided, and we also forbid n0 from being too large. For more
details on the philosophy behind (RA1), see Remark 8.5.13 (near p. 96).

8.3 Some critical calculations

8.3.1 A second-order approximation

Recall, from Chapter 3 and §4.1, the Dirichlet series Φ(c, s), L(s, Vc), and the “first-order
approximation” Φ = Ψ1Ψ2, with Ψ1 := 1/L and Ψ2 := ΦL. As suggested in Remark 4.1.3,
the “first-order error” Ψ2 is a “source of ϵ” in §4.1, coming from both good primes p ∤ F∨(c)
and bad primes p | F∨(c).

From the perspective of the good primes—which define “standard” data—we would like a
more precise “standard” approximation of Φ. We thus further approximate Φ/L(s, Vc)

−1 by
L(1/2 + s, V )−1L(2s, Vc,

∧2)−1, in view of the “second-order phenomena”

S̃c(p)− µc(p) = S̃c(p)− Ẽc(p) = −p−1/2ẼF (p) = −p−1/2λ̃V (p) for p ∤ F∨(c)

(valid for even integers m ≥ 4) and

S̃c(p
2)− µc(p

2) = 0−
∑
i<j

α̃c,i(p)α̃c,j(p) = −λ̃Vc,∧2(p) for p ∤ F∨(c).

Remark 8.3.1. If m were odd, we would instead have S̃c(p)− λ̃c(p) = p−1/2λ̃V (p) for p ∤ F∨(c),

and also instead care about the identity S̃c(p
2)− λ̃c(p2) = −λ̃Vc,Sym2(p) for p ∤ F∨(c).

For technical reasons, we separately study the “standard Hasse–Weil part” of Φ and the
“bad part” of Φ, based on the following definition:

Definition 8.3.2. Given c ∈ Zm with F∨(c) ̸= 0, let ΦHW(c, s) :=
∏

p∤F∨(c)Φp(c, s) and

ΦB(c, s) :=
∏

p|F∨(c) Φp(c, s). If m ≥ 3 is even, define

Φ1(c, s) := L(s, Vc)
−1L(1/2 + s, V )−1ζ(2s)−1

Φ2(c, s) := ζ(2s)/L(2s, Vc,
∧2)

Φ3 = ΦHW
3 (c, s) := ΦHWΦ−1

1 Φ−1
2 = ΦHW(c, s)L(s, Vc)L(1/2 + s, V )L(2s, Vc,

∧2).

For each j ∈ [3], let ac,j(n) be the ns coefficient of Φj(c, s).
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Example 8.3.3. ac,2(n) = 0 if n is not a square.

Remark 8.3.4. Here Φ1(c, s) is precisely the “mollified” version of 1/L(s, Vc) considered in
Conjecture 8.2.24 (R2’)! And Φ2(c, s) = L(2s, ϕc,2)

−1 under Conjecture 8.2.16 (HWSp).

Remark 8.3.5. For each j ∈ [3], the definition of ac,j(n) can be extended to tuples c ∈
∏

p|n Zmp
with F∨(c) ̸= 0. In local calculations, we sometimes abuse notation accordingly.

Proposition 8.3.6. Fix c ∈ Zm with F∨(c) ̸= 0, and suppose m ∈ {4, 6}. Assume
Conjecture 8.2.11 (HW2). Then Φ3 converges absolutely over ℜ(s) > 1/3; locally, we have,
uniformly over c, p, l, that

ac,3(p) · 1p∤F∨(c) = 0 and ac,3(p
2) · 1p∤F∨(c) ≪ p−1/2 and ac,3(p

l)≪ϵ p
lϵ.

Also, under (HWSp), Φ2 is holomorphic on the region ℜ(s) > 1/4.

Proof. Our definition of ΦHW, along with GRC, ensures that each local factor Φj,p(c, s) is
“well-behaved over ℜ(s) > 0” in a standard sense—even at “bad” primes p | F∨(c). Specifically,
we have |ac,j(pl)| ≪ϵ p

lϵ uniformly over tuples c (with F∨(c) ̸= 0), primes p, and integers
l ≥ 1.

In particular, “bad local factors” do not affect holomorphy, or absolute convergence,
over any subset of the half-plane ℜ(s) > 0. Now fix c and a prime p ∤ F∨(c), so that

Φp(c, s) = 1 + S̃c(p)p
−s, where

S̃c(p) = Ẽc(p)− p−1/2ẼF (p) = −λ̃c(p)− p−1/2λ̃V (p).

The product Φp(c, s)Lp(s, Vc) simplifies to

(1− λ̃c(p)p−s − λ̃V (p)p−1/2−s)(1 + λ̃c(p)p
−s + λ̃c(p

2)p−2s +O(p−3s))

= 1− λ̃V (p)p−1/2−s + [λ̃c(p
2)− λ̃c(p)2]p−2s +O(p−1/2−2s) +O(p−3s).

To get further cancellation, we multiply by

Lp(1/2 + s, V ) = 1 + λ̃V (p)p
−1/2−s +O(p−1−2s),

and also—motivated by the identities “(λ̃c(p
2), λ̃c(p)

2) = (λ̃Vc,Sym2(p), λ̃Vc,
⊗2(p)) if p ∤ F∨(c)”

and “
⊗2 = Sym2⊕

∧2 in general”—by

Lp(2s, Vc,
∧2) = 1 + λ̃Vc,

∧2(p)p−2s +O(p−4s),

to get

Φp(c, s)Lp(s, Vc)Lp(1/2 + s, V )Lp(2s, Vc,
∧2) = 1 +O(p−1/2−2s) +O(p−3s).

By definition, the left-hand side is precisely the “second-order error” Φ3,p, as desired.

Remark 8.3.7. From the perspective of Φ1, we consider Φ2,Φ3 “error factors” and need to
separately consider large and small “error moduli” (with only the small moduli participating
in the RMT-type predictions we use).
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Remark 8.3.8. If m were odd, then ΦHW(c, s) would be

≈ L(s, Vc)L(1/2 + s, V )/L(2s, Vc, Sym
2).

Corollary 8.3.9 (Φ3E). Assume the setting and hypotheses of Proposition 8.3.6. Let
S := {c ∈ Zm : F∨(c) ̸= 0}. Fix A ∈ R>0. Then uniformly over Z,N > 0, we have

∑
c∈S

1∥c∥≤Z

 ∑
n∈[N,2N ]

|ac,3(n)|

A

≪A,ϵ Z
mN (1/3+ϵ)A.

Proof. If we define 00 := 1, then the result trivially holds when A = 0. By Hölder over c ∈ S,
it thus suffices to prove the (extended) result for A ∈ Z≥0. The case A = 0 is trivial (as noted
already), so from now on, assume A ∈ Z≥1.

Given c, n, let nc := (n, F∨(c)∞) and nc := n/nc. Proposition 8.3.6 implies—uniformly
over (c, n) ∈ S × Z≥1—that |ac,3(n)| ≪ϵ n

ϵ · 1nc=sq(nc) · (nc/ cub(nc))−1/2.
If we fix c ∈ S, then it follows that∑

n∈[N,2N ]

|ac,3(n)| ≪ϵ N
ϵ
∑′

nc≤2N

∑′

nc≍N/nc

1nc=sq(nc) · (cub(nc)/nc)1/2.

(On the right-hand side, we think of nc, n
c as separate variables, subject to the constraints

nc | F∨(c)∞ and nc ⊥ F∨(c).) But in general, the sum of (cub(a)/a)1/2 over square-full
a ≍ A is at most the sum over cube-full d≪ A of the quantity

(d/A)1/2 ·#{square-full a ≍ A : d | a and
√
a/d ∈ Z} ≪ (d/A)1/2 · (A/d)1/2 = 1.

Furthermore, #{cube-full d≪ A} ≍ A1/3, so ultimately we conclude that∑
n∈[N,2N ]

|ac,3(n)| ≪ϵ N
ϵ
∑′

nc≤2N

(N/nc)
1/3 ≤ N1/3+ϵ

∑′

nc≤2N

1.

In general, if G ∈ Z̸=0, then #{u ≤ 2N : u | G∞} ≪ϵ (2N ·G)ϵ [HB98, antepenultimate
display of p. 683]. If we take G := F∨(c) ≪F ∥c∥Om(1), then Corollary 8.3.9 immediately
follows, provided 2N > Zη holds with η := 1/(2A), say.

Now suppose 2N ≤ Zη, expand (
∑′

nc≤2N 1)A as a sum over u1, . . . , uA ≤ 2N , and switch

the order of c,u. Then for each u, we have rad(u1 · · ·uA) ≤ u1 · · ·uA ≤ ZAη ≤ Z. By
Lang–Weil and the Chinese remainder theorem (and the well-known bound O(1)ω(rad(−)) ≪ε

rad(−)ε), we may therefore reduce Corollary 8.3.9 to the statement that for all ε > 0, we
have ∑

u1,...,uA≤2N

rad(u1 · · ·uA)ε−1 ≪A,ε (2N)O(A2ε).

To prove this last statement, observe that if u1, . . . , uA ≤ 2N and rad(u1 · · ·uA) = r,
then u1, . . . , uA | r∞ and r ≤ (2N)A; but |{u ≤ 2N : u | r∞}A| ≪A,ε (2N · r)Aε and∑

r≤(2N)A(2N · r)Aεrε−1 ≪A,ε (2N)O(A2ε), since A ≥ 1.

Remark 8.3.10. Such care to keep Corollary 8.3.9 (Φ3E) “Zϵ-free” is only important in the
proof of Theorem 8.4.1(a), not in the proof of Theorem 8.4.1(b).
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8.3.2 Computing local averages

The local behavior of c 7→ λ̃c(n) or c 7→ µc(n) on average plays a basic role in our under-
standing of families of L-functions. For reference, write Lp(s) =

∏
i(1 − α̃i(p)p−s)−1 and

1/Lp(s) =
∏

i(1− α̃i(p)p−s), so e.g.

µc(p) = −
∑
i

α̃c,i(p) = −λ̃c(p)

and

µc(p
2) =

∑
i<j

α̃c,i(p)α̃c,j(p) =
λ̃c(p)

2 −
∑

i α̃c,i(p)
2

2
.

To prove that certain averages exist, we will assume Conjectures 8.2.6 (EKL) and 8.2.11 (HW2).
But to satisfactorily estimate said averages, we will take a concrete point-counting approach
(though one could use monodromy groups instead; see Remark 8.5.12 below). The result
is Proposition 8.3.12 below. To concisely state the averages relevant to us, we first make a
convenient archimedean definition:

Definition 8.3.11. Say that a tuple Z ∈ Rm is β-lopsided if |Zi| ≤ |Zj|β for all (i, j) ∈ [m]2.
Then view {Z ∈ Rm : Z is β-lopsided} as a topological subspace of Rm ∪ {∞} ∼= Sm.

Proposition 8.3.12 (LocAv, or LA). Fix F with m ≥ 4 even, and assume (EKL) and
(HW2). Now fix (a, n0, β, n) ∈ Zm×Z≥1×R≥1×Z≥1. If we restrict c to the locus F∨(c) ̸= 0,
then the following two limits exist, and are independent of β:

µ̄a,n0

F (n) := lim
Z→∞

(
1

|B(Z) ∩ {a mod n0}|
·

∑′

c≡a mod n0

1c∈B(Z) · µc(n)

)

µ̄a,n0

F,2 (n1, n2) := lim
Z→∞

(
1

|B(Z) ∩ {a mod n0}|
·

∑′

c≡a mod n0

1c∈B(Z) · µc(n1)µc(n2)

)
.

Furthermore, for some absolute constants δ, δ′ > 0, the following statements hold.

(LA1) The function n 7→ µ̄a,n0

F (n) is multiplicative. For ℜ(s) ≥ 1/2− δ, we have∑
l≥0

p−lsµ̄a,n0

F (pl) = 1 + (λ̃V (p)p
−s−1/2 + p−2s) +O(pO(vp(n0)−1−δ′),

uniformly over p, s,a, n0, β.

(LA2) The function (n1, n2) 7→ µ̄a,n0

F,2 (n1, n2) is multiplicative (i.e. if gcd(n1n2, n
′
1n

′
2) = 1, then

µ̄a,n0

F,2 (n)µ̄a,n0

F,2 (n′) = µ̄a,n0

F,2 (nn′)). For ℜ(s) ≥ 1/2− δ, we have∑
l≥0

p−l·sµ̄a,n0

F,2 (pl) = 1 + p−s1−s2 +
∑
j∈[2]

(λ̃V (p)p
−sj−1/2 + p−2sj) +O(pO(vp(n0))−1−δ′),

uniformly over p, s,a, n0, β.
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Definition 8.3.13. Let µ̄F (n) := µ̄0,1
F (n), and µ̄F,2(n1, n2) := µ̄0,1

F,2(n1, n2).

Definition 8.3.14. For p-adic calculations only, we use the convenient convention “µc, ac,1, ac,2, ac,3 :=
0” for all c ∈ Zmp with F∨(c) = 0. (In particular, for such c’s, we set µc(1) := 0, etc., so
µc, ac,1, ac,2, ac,3 are not multiplicative in the standard sense.)

Proof of existence and multiplicativity of limits. By (EKL), [Wan21a, Corollary 6.3], and the
bound |α̃(p)| ≤ 1 (from GRC), it is routine to show that the p-adic averages

Ec∈Zm
p ∩{a mod n0}[µc(p

l)] and Ec∈Zm
p ∩{a mod n0}[µc(p

l1)µc(p
l2)]

are well-defined, and furthermore (by the Chinese remainder theorem) that these p-adic
averages determine µ̄a,n0

F (n), µ̄a,n0

F,2 (n1, n2) in the obvious way. (Note that in Zm, the locus
F∨(c) = 0 has “density 0” in the boxes defining µ̄a,n0

F (n), µ̄a,n0

F,2 (n1, n2).)

Beginning of proof of required estimates. If δ′ ≤ 1, say, then by GRC, we may “absorb” the
case p | n0 into the error term O(pO(vp(n0))p−1−δ′). Now assume p ∤ n0. If 3 · (1/2− δ) ≥ 1+ δ′,
then we are left with analyzing the contributions from l ∈ {1, 2} in (LA1), and |l| ∈ {1, 2} in
(LA2). In other words, up to re-defining δ, δ′, we must prove the following.

(1) Ec∈Zm
p
[µc(p)] = λ̃V (p)p

−1/2 +O(p−1/2−δ′), for l = 1.

(2) Ec∈Zm
p
[µc(p

2)] = 1 + O(p−δ
′
), for l = 2. (Cf. “essentially symplectic” in §8.5.2, which

begins near p. 95.)

(3) Ec∈Zm
p
[µc(p)

2] = 1 +O(p−δ
′
), for l = (1, 1). (Cf. “essentially cuspidal and self-dual”.)

(Note that (1)–(2) “cover” not just the cases “l ∈ {1, 2}” in (LA1), but also the cases
“|l| ∈ {1, 2} with l1l2 = 0” in (LA2).)

But in each of (1)–(3), the locus p | F∨(c) fits in an O(p−1) error term, by Lang–Weil and
GRC. We may then restrict to p ∤ F∨(c), in which case µc(p) = −λ̃c(p) := −t̃r(Frob |Hm∗ ) =

Ẽc(p) and µc(p)
2 = Ẽc(p)

2, while µc(p
2) = 1

2
(λ̃c(p)

2 −
∑

i α̃c,i(p)
2) = 1

2
(Ẽc(p)

2 + Ẽc(p
2)).3

(Note that these formulas for µc(p
•) are only fully correct when m∗ is odd.)

It thus remains to prove the following; but these follow from Corollary 5.1.19.

(a) Ec∈Fm
p
[Ẽc(p)1p∤F∨(c)] = λ̃V (p)p

−1/2 +O(p−1/2−δ′).

(b) Ec∈Fm
p
[Ẽc(p

2)1p∤F∨(c)] = 1 +O(p−δ
′
).

(c) Ec∈Fm
p
[Ẽc(p)

21p∤F∨(c)] = 1 +O(p−δ
′
).

(Note here that (a) implies (1), and (c) implies (3), while (b)–(c) imply (2).)

3If p ∤ F∨(c), then µc(p2) = (−1)2λ̃Vc,
∧2(p), but we only need this

∧2
interpretation elsewhere.
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8.3.3 “Deriving” the Ratios Conjectures

Assume the hypotheses, (EKL) and (HW2), of Proposition 8.3.12 (LocAv). Then for the
“ratio” 1/L (or for “pure products” thereof), the recipe [CFZ08, §5.1]—carried over to the
general setting of [SST16, pp. 534–535, Geometric Families and Remark (i)]—now makes
sense for the families c 7→ πc underlying Conjectures 8.2.18 and 8.2.28. We will soon “derive”
these two conjectures accordingly.

Remark 8.3.15. If one were willing to directly apply a similar “recipe” to one of Φ1Φ2,Φ
HW,Φ

(and not just 1/L or Φ1), then our work would simplify correspondingly. But it is unclear
how generally a naive recipe like that could hold, without a clear supporting model like a
classical random matrix ensemble.

Remark 8.3.16. In our specific “geometric” Ratios Conjectures, (i) we are assuming (EKL),
not just (HW2); (ii) the L-functions L(s, Vc) are not all primitive, as [CFK+05] explicitly
requires, and [CFZ08] thus implicitly requires; and (iii) we do not order our families by
conductor (or by discriminant, for that matter). This is all OK:

(1) Regarding (i), we use (EKL) here (in §8.3.3) merely to prove that certain local averages
exist. This is technically important, but far from the heart of RMT-type matters. In fact,
it would be harmless to explicitly include (EKL) as a hypothesis in Conjectures 8.2.18
and 8.2.28, if one wanted to do so.

(2) Point (ii) is minor. Using (HW2), one can show that L(s, Vc) is primitive for all c’s
outside a fairly sparse set. (See “essentially cuspidal” in §8.5.2, which begins near
p. 95.) So for our purposes (locally and globally), the question of whether to include
all L(s, Vc)’s, or only primitive ones, is essentially cosmetic.

Alternatively, it may well be that primitivity is not essential, even on average; see the
sentence “Non-primitive families can also be handled. . . ” on [CFK+05, p. 34].

(3) Regarding (iii), we are still following the RMT-based philosophy underlying [CFZ08].
We are just indexing by different level sets, as is natural for multi-parameter families
like ours; cf. [SST16, p. 535, Remark (i); and p. 560, second paragraph after (25)].

For a more thorough discussion of the expected RMT-type models for our families, see
§8.5.2, which begins near p. 95.

Deriving (R1)–(R2)

To “derive” Conjecture 8.2.18(R1), replace each term

L(s, πc)
−1 =

∑
n≥1

µc(n)n
−s

on the “left-hand side of (R1)” with its “naive expected value over c”, i.e.∑
n≥1

µ̄F (n)n
−s =

∏
p

∑
l≥0

p−lsµ̄F (p
l) =

∏
p

[
1 + (λ̃V (p)p

−s−1/2 + p−2s) +O(p−1−δ′)
]
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for ℜ(s) ≥ 1/2− δ. This “naive average” factors as ζ(2s)L(s+ 1/2, V )AF (s), for a certain
Euler product AF (s) that converges absolutely on the half-plane ℜ(s) ≥ 1/2− δ.

To “derive” Conjecture 8.2.18(R2), similarly replace

L(s1, πc)
−1L(s2, πc)

−1 =
∑

n1,n2≥1

µc(n1)µc(n2)n
−s,

for ℜ(s) ≥ 1/2− δ, with

∏
p

∑
l≥0

p−l·sµ̄F,2(p
l) =

∏
p

1 + p−s1−s2 +
∑
j∈[2]

(λ̃V (p)p
−sj−1/2 + p−2sj) +O(p−1−δ′)

 ,
which factors as AF,2(s)ζ(s1 + s2)

∏
j∈[2] ζ(2sj)L(sj + 1/2, V ).

Remark 8.3.17. Here ζ(2s), L(s+ 1/2, V ), ζ(s1 + s2), . . . are called polar factors.

Remark 8.3.18. When there are L’s in the numerator, the recipe must be modified using the
approximate functional equation for L. (In particular, the root number, gamma factor, and
conductor play a visible role on average, whereas in (R1)–(R2) they seem to be be hidden in
the σ-dependence, i.e. how close s is allowed to be to the critical line.)

Remark 8.3.19. Under a quasi-GRH for ζ(s), L(s, V ), the errors in (R1)–(R2) remain es-
sentially the same (up to a factor of Oσ,σ,ϵ(Z

ℏϵ)) even after dividing both sides of (R1) by
ζ(2s)L(s+ 1/2, V ), or both sides of (R2) by

∏
j∈[2] ζ(2sj)L(sj + 1/2, V ).

Deriving (RA1)

To “derive” Conjecture 8.2.28 (RA1), replace each term

L(s, πc)
−1 =

∑
n≥1

µc(n)n
−s

on the “left-hand side of (RA1)”, for ℜ(s) ≥ 1/2 − δ, with its “naive expected value over
c ≡ a mod n0”, i.e.∑

n≥1

µ̄a,n0

F (n)

ns
=
∏
p

∑
l≥0

µ̄a,n0

F (pl)

pls

=
∏
p

[
1 + (λ̃V (p)p

−s−1/2 + p−2s) +O(pO(vp(n0))−1−δ′)
]
.

This “naive average” factors as ζ(2s)L(s+1/2, V )Aa,n0

F (s), for a certain Euler product Aa,n0

F (s)
that converges absolutely on the half-plane ℜ(s) ≥ 1/2− δ.

8.4 Main conditional results

Let Σgen denote the contribution to the right-hand side of eq. (3.2) from the locus F∨(c) ̸= 0.

(Explicitly, Σgen := Xm−3
∑

n≥1

∑
c∈Zm 1F∨(c)̸=0 · n−(m−1)/2S̃c(n)Ĩc(n).)
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Theorem 8.4.1 ([Wan21a, Theorem 3.49]). Fix F diagonal with m ∈ {4, 6}, and fix
w ∈ C∞

c (Rm) with (F,w) clean. Assume lcm(F ) is cube-free. Then

(a) |Σgen| ≪ X3(m−2)/4 holds under (HWSp), (SFSCq,6+), and (R2’); and

(b) |Σgen| ≪ X3(m−2)/4−Ω(1) holds under (HWSp), (SFSCq,6+), (RA1), and (EKL).

Proof sketch. We use (SFSCq,6+) precisely to ensure that Conjecture 7.3.7 (B3) holds (see
§7.3). Now factor Φ using Definition 8.3.2. For (a), begin with a framework for “restriction
and separation” going beyond Remark 4.1.2 (see [Wan21a, §5] for details), and then use
Hölder appropriately between “good” and “bad” factors; some important ingredients are (B3),
Lemma 7.1.4, Conjecture 8.2.24 (R2’), [Wan21a, Proposition 7.27], and Corollary 8.3.9 (Φ3E).
For (b), we handle some ranges (namely those with large “error moduli”) as in (a). Over the
remaining ranges, we then decompose Σgen “adelically” into pieces—based on the polynomial
H from Conjecture 8.2.6 (EKL)—up to a small exceptional set constructed in [Wan21a, §7.8]
by algorithmic tree-like means. We then estimate these pieces via local calculations and
Poisson summation.

Remark 8.4.2. In Theorem 8.4.1(b), the power saving Ω(1) deserves some clarification, because
the situation here is not as clear-cut as that in Corollary 6.1.4.

(1) The saving Ω(1) can be safely taken to be independent of w: no exponent anywhere in
[Wan21a] truly depends on the weight w. (In particular, (SFSC), (RA1), and (EKL)
depend only on F , not on w.)

(2) If (SFSC), (RA1), and (EKL) are assumed to be sufficiently “exponent-uniform” over
F , then one can take Ω(1) to be independent of F (but still dependent on m).

Regarding the implied constant in Theorem 8.4.1(b), one could probably work out an explicit
w-dependence of the form (1 + diam(Suppw) + ∥w∥OF (1),∞)OF (1) (where ∥w∥k,∞ denotes a
Sobolev norm), given enough patience. An explicit F -dependence would probably take even
more patience.

Theorem 8.4.3 ([Wan21a, Theorem 3.39]). Fix F diagonal with m = 6. Assume lcm(F ) is
cube-free.

(a) Say F = x31+· · ·+x36, and assume (HWSp), (SFSCq,6+), and (R2’). Then NF (X)≪ X3

holds as X →∞. Therefore, a positive fraction of integers lie in {x3+y3+z3 : (x, y, z) ∈
Z3

≥0}.

(b) Alternatively, assume (HWSp), (SFSCq,6+), (RA1), and (EKL). Then for any given
w ∈ C∞

c (Rm) with (F,w) clean, the pair (F,w) is HLH (with a power saving), in the
sense of Definition 1.4.6. Therefore,

(i) the Hasse principle holds for V/Q; and also

(ii) asymptotically 100% of integers a ̸≡ ±4 mod 9 lie in {x3+ y3+ z3 : (x, y, z) ∈ Z3},
if F = x31 + · · ·+ x36.
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Proof of Theorem 8.4.3(a) assuming Theorem 8.4.1(a). By a Hölder argument (see [Wan21a]
for details), NF (X)≪ X3. Consequently, Observation 2.1.3 implies positive lower density of
{x3 + y3 + z3 : (x, y, z) ∈ Z3

≥0}.

Proof of Theorem 8.4.3(b) assuming Theorem 8.4.1(b). Using Corollary 6.1.4—and the clean-
liness assumption in Theorem 8.4.3(b)—we find that Theorem 8.4.1(b) directly implies HLH
for (F,w), in fact with (an unnecessary) power saving. Theorem 8.4.3(b)(i) then immediately
follows, upon choosing a weight w ∈ C∞

c (R6) with (F,w) clean and cHLH,F,w > 0 (doable
by hand, or via Proposition 6.2.3). On the other hand, Theorem 8.4.3(b)(ii) follows from
Theorem 2.1.8 (essentially due to [Dia19]).

Remark 8.4.4. See the introductions to [HB99,HB07] for some history, and (what is likely)
the state of affairs, on the Hasse principle for diagonal cubic forms (although [HB07] also
discusses non-diagonal cubic forms)—with the unconditional record being m = 7, due to
[Bak89]. (Over global function fields of characteristic ≥ 7, the record is m ≥ 6, achieved by
geometric techniques [Tia17].)

Remark 8.4.5. In Theorem 8.4.3 (and in Theorem 8.4.1), one could relax the assumption
(HWSp) to (HW2), but that would muddy the proof, with little benefit. (For a brief sketch
of the necessary modifications, see [Wan21a, Appendix A.4].)

Remark 8.4.6. In Theorem 8.4.3 (and in Theorem 8.4.1), I expect that the assumption
(SFSCq,6+) can be relaxed to (SFSCp,3); see Remark 7.3.13. Furthermore, I believe (the proof
of) Theorem 8.4.1 would directly generalize to Pm−1

Q -smooth F if one replaced the assumption
(SFSCq,6+) with Conjecture 7.3.7 (B3); however, to generalize (the proof of) Theorem 8.4.3
accordingly, one would also need to generalize Corollary 6.1.4.

Remark 8.4.7. I expect that with a lot of additional technical work (cf. Remark 7.1.6),
one could replace the cleanliness condition in Theorem 8.4.3(b) with the condition that
(F,w) be smooth. (If successful, this would, in particular, conditionally imply the original
HLH conjecture of Hooley from Example 1.2.1.) I suspect that if (F,w) is smooth, then in
the key “generic range” where |c1|, . . . , |cm| are all roughly of size X1/2 (up to a factor of
X±δ), a slightly deformed version of Lemma 7.1.4 should hold (because in the critical range
|u| ≍ ∥v∥ ≫ 1, the zeros of u∇F (x)−v would then lie relatively far from (hessF )R(R)), and
thus the proof of Theorem 8.4.1 should remain adequate. (The complementary “non-generic
range” of c’s can be handled under GRH, following e.g. §4.1.)

8.5 Supplementary material on L-functions

8.5.1 A discussion of (HW2) and (HWSp)

Generalities

Fix F with m ≥ 3. (Here we allow arbitrary m ≥ 3 and Pm−1
Q -smooth F , until further

notice.) Fix a tuple c ∈ Zm with F∨(c) ̸= 0. In the notation of Definition 8.2.4 and
Conjecture 8.2.11 (HW2), then define m∗,Mc,MV and fix (M,S).
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Remark 8.5.1. In Definition 8.2.1, we fixed an auxiliary pair (ℓ0, ι). But we could have instead
used Serre’s definition of Hasse–Weil L-functions (and its extension to motives), where one
assumes “ℓ-independence of the local factors Lp” (known for us by [Las17, Corollary 1.2],4

since our M ’s are “tensor-generated” by smooth projective hypersurfaces). Note that
[Hoo86b,HB98] both defined L(s, Vc) following Serre; for m ∈ {4, 6}, the ℓ-independence
of the Lp(s, Vc)’s was already known at the time, due to connections with abelian varieties;
cf. [Tay04, paragraph after Conjecture 1.2].

Remark 8.5.2. It is conjectured that M should be semi-simple (as an ℓ0-adic representation of
GQ), in which case [Tay04, p. 100, prior to Conjectures 3.4–3.5] precisely “specifies” (HW2)’s
putative πM . Semi-simplicity is known at least for M =Mc when m ∈ {4, 6}, and thus (by a
general representation-theoretic argument5) for all M ’s “tensor-generated” by such Mc’s.

We now briefly elaborate on the (conjectural) rationale for each part of (HW2).

(a) By definition, Mc,MV arise from geometry, pure of weight m∗, 1 +m∗, respectively.
And if M ≠ Mc,MV , then by the Künneth GQ-isomorphism, M is a subquotient of
H2m∗((Vc)Q × (Vc)Q,Qℓ0)—whence M arises from geometry, pure of weight 2m∗.

It is known that dimMc, dimMV ≪m 1 (uniformly over c), so dimM ≪m 1 in general
as well.

Also, M is unramified away from S (by smooth proper base change), so we should
have q(M) | rad(S)Om(1)—trivially if M =MV , and by the “bounded depth in families”
observation of [SST16, §2.11] if M ̸=MV .

(b) The finiteness of the set of gamma factors L∞(s,M) (for a given value of m, as c
varies) should follow at least formally from Hodge theory; see [Tay04, p. 79, definition
of HT(−); p. 86, definition of Γ(−, s); and p. 80, Conjecture 1.2].

(c) This is a precise instance of the Langlands reciprocity conjecture; cf. [SST16, Conjec-
ture 4]. See also [SST16, pp. 534–535, Geometric Families] for some context.

(d) We say that a cuspidal π satisfies GRC if it is tempered at all places. If each cuspidal
constituent of the putative isobaric πM is tempered, then |α̃M,j(p)| ≤ 1 for all p, j, and
also L∞(s,M) is holomorphic on {σ > 0}; but the implication, even in the cuspidal
case, may not literally be an equivalence (cf. [FPRS19, Axiom 4 and Lemma 3.2]).

(e) We say that L(s, πM) satisfies GRH if all of its zeros in the region ℜ(s) > 0 lie
on the line ℜ(s) = 1/2. (Under our “assumptions” on πM from (HW2)(c)–(d), it
would be equivalent to require GRH to hold for all “cuspidal constituent” L-functions.
This is because all such “constituents” are known to be zero-free for ℜ(s) ≥ 1, by
[IK04, Theorem 5.42].)

4which is based in part on Scholze’s results on the weight-monodromy conjecture
5using (i) a representation-theoretic passage from a topological subgroup H ⊆ GLdimMc(Qℓ0) to its

Zariski closure in GLdimMc /Qℓ0 , based on the relative coarseness of the Zariski topology; and (ii) [Mil17,
Corollary 22.44], a general result on algebraic groups over fields of characteristic zero
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Remark 8.5.3. (HW2) and Godement–Jacquet imply that L(s,M) has finite order and a
standard functional equation (with |ϵ(M)| = 1, etc.), and is holomorphic except possibly
for poles at s = 1 corresponding to trivial constituents of πM . (Here the unitarity in
Definition 8.2.10 restricts poles to ℜ(s) = 1, and the finiteness restricts poles to s = 1.)
Together with (HW2)(b), GRC, and GRH, these analytic properties imply the uniform
estimate 1/L(s,M) ≪m,ϵ q(M)ϵ(1 + |s|)ϵ over c,M, s with ℜ(s) ≥ 1/2 + ϵ; see e.g. [IK04,
Theorem 5.19 and the ensuing paragraph].

We now explain the (conjectural) rationale for (HWSp).

(1) The first part of (HWSp) is (HW2), which we have already explained.

(2) For simplicity, saym ≥ 4, i.e.m∗ ≥ 1. GivenX ∈ {Vc, V } of dimension d ∈ {m∗, 1+m∗},
consider the cup-product pairing

ψ : Hd(XQ,Qℓ0)×Hd(XQ,Qℓ0)→ H2d(XQ,Qℓ0)
∼= Qℓ0(−d),

where Qℓ0(−d) denotes the Tate motive of weight 2d. By Poincaré duality, ψ is non-
degenerate. In fact, ψ induces a non-degenerate pairing onHd

diff(X) = Hd(X)/Hd(Pm−1),
as we now recall.

Case 1: d is odd. Then Hd(Pm−1) = 0, so Hd
diff(X) = Hd(X). Thus ψ can (trivially) be

viewed as a non-degenerate pairing on Hd
diff(X).

Case 2: d is even. Then ψ is symmetric (and non-degenerate), and Hd(Pm−1) is one-
dimensional. It is known that the restriction ψ|Hd(Pm−1) is non-degenerate; this follows,
for instance, from Poincaré duality (for a copy of Pd sitting in Pm−1) and the functoriality
of cup products. Therefore, we have an orthogonal direct sum decomposition Hd(X) =
Hd(Pm−1) ⊕ Hd(Pm−1)⊥, and ψ|Hd(Pm−1)⊥ is non-degenerate. Via the decomposition,
Hd

diff(X) ∼= Hd(Pm−1)⊥, so ψ|Hd(Pm−1)⊥ can be viewed as a non-degenerate pairing on
Hd

diff(X).

It follows that there are non-degenerate pairingsMc×Mc → Qℓ0(−m∗) andMV ×MV →
Qℓ0(−1−m∗), whence M ∼= M∨(−w) if M ∈ {Mc,MV }. Hence M ∼= M∨(−w) even if
M /∈ {Mc,MV }. In every case, M is self-dual up to a Tate twist of weight 2w. So πM
should be self-dual on the nose.

(3) Say 2 | m, i.e. 2 ∤ m∗. Then the aforementioned pairing Mc ×Mc → Qℓ0(−m∗) is
skew-symmetric. So under Tate’s global semi-simplicity conjecture, the representation
Mc∧Mc should decompose as Qℓ0(−m∗)⊕M ′

c,2, for some representation M ′
c,2 of weight

2m∗. Then M ′
c,2 should correspond to some nice isobaric ϕc,2, with the expected

compatibilities (a)–(b) of (HWSp).

Remark 8.5.4. There is an intuitive reason forMc,MV to be self-dual: at least at good primes,
Mc,MV arise from point counts, which are obviously always integral (and therefore real).

Remark 8.5.5. Suppose 2 | m, and assume (HWSp). Then most of the standard analytic
properties of L(s, Vc,

∧2)—based on (HW2)—carry over to L(s, ϕc,2) = L(s, Vc,
∧2)/ζ(s).

Furthermore, L(s, ϕc,2) is zero-free for ℜ(s) ≥ 1. By GRH for L(s, Vc,
∧2), it follows that

1/L(s, ϕc,2)≪m,ϵ q(Vc)
ϵ(1 + |s|)ϵ holds uniformly over c, s with ℜ(s) ≥ 1/2 + ϵ.
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Let πc := πMc . Before proceeding, note that if 2 | m and Mc is irreducible, then we expect
the putative πc to be cuspidal self-dual symplectic as defined on [SST16, p. 533]. Out of idle
curiosity, we raise the following refined question, which could be too optimistic.

Question 8.5.6. Say 2 | m, and assume (HW2). Then is it true that each cuspidal constituent
πc,i of πc is self-dual and symplectic, with L(s, πc,i,

∧2) analytic except for a simple pole at
s = 1? (If this is really true, then all πc,i must be nontrivial, i.e. L(s, πc) must be entire.)

Remark 8.5.7. The fact that πc may not be cuspidal muddies the waters. Perhaps [Gro16]
can clarify matters (with the notion of a symplectic motive).

Example 8.5.8. Saym = 4. Then πc is the representation generated by the weight 2 modular
cusp form of level NJ(Vc) associated to the elliptic curve J(Vc)/Q. Here L(s, πc,

∧2) = ζ(s).

Example 8.5.9. Fix F diagonal, and suppose c = (0, . . . , 0, 1). Then Vc is a diagonal cubic
hypersurface of dimension m∗, so L(s, Vc) is a product of normalized L-functions attached
to algebraic Hecke characters of weight m∗ on Q(ζ3). Furthermore, if 2 | m, then no factors
of ζ(s) can appear, so L(s, Vc) must be entire. (These facts about L(s, Vc) are classical; see
Lemma 8.6.7 below for details.)

Alternative motivic descriptions

Fix m,F, c as before. Then Vc is isomorphic to a smooth projective cubic hypersurface of
dimension m∗ ≥ 0.

Often the representation Mc can also be realized from other perspectives, at least up to
semi-simplification. Recall that by Chebotarev and Brauer–Nesbitt, two “finitely ramified”
ℓ-adic representations of GQ agree up to semi-simplification if and only if their local L-
factors agree at all but finitely many primes. In particular, the L-function L(s,−) from
Definition 8.2.1, at least “up to finitely many factors”, is a “complete and well-defined”
invariant for “such representations up to semi-simplification”.

Remark 8.5.10. Semi-simplification and “finite factor-fudging” should be unnecessary (in
view of Tate’s global semi-simplicity conjecture), but to be safe (unconditionally speaking),
we allow them. In any case, they are convenient.

Returning to Vc, we now give some alternative descriptions of Mc for m ∈ {4, 5, 6}. Here
we let “≈” denote “equality up to finitely many Euler factors”. (Experts may well know more
precise information, either in general or in our specific situations; e.g. for item (1) below, see
the discussion in Appendix A surrounding Proposition A.1.1.)

(1) If m ∈ {4, 6}, then there exists an abelian variety Ac of dimension (dimMc)/2 ∈ {1, 5}
such that L(s, Vc) ≈ L(s, Ac). For m = 4, we can take Ac to be the Jacobian J(Vc)
of the genus one curve Vc, as noted on [HB98, p. 680]. For m = 6, we can take the
Albanese A(F (Vc)) of the Fano surface F (Vc) of lines on Vc.

6

6See [DLR17, Theorem 4.1] for a computational perspective, explaining at least the Fano surface connection.
For a more complete discussion, see [Rei72, Appendix 4.3] or [Mur74].
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(2) If m = 5, then there exists a 6-dimensional Artin representation ρc associated to Vc
such that L(s, Vc) ≈ L(s, ρc). At least at all but finitely many primes, this is explained
in [Man86]. To include all primes, one could apply [Poo17, Proposition 9.2.6] to (Vc)Q.
(The point is that the ℓ0-adic cycle class homomorphism [Poo17, (7.6.2)] for (Vc)Q
is an isomorphism, since the cohomological Brauer group of (Vc)Q vanishes [Poo17,
Corollary 6.9.11]. See also [Jah14, Remark III.4.10, Theorem III.7.9(ii), Lemma III.8.4,
and Example III.8.7(ii)].)

Strictly speaking, such observations are unnecessary. But the question of reciprocity for
abelian varieties (see e.g. [Gro16,BCGP21]) and Artin motives is currently better studied than
that for hypersurfaces—hence worth mentioning (especially for m ≥ 5, where automorphy
seems to remains open for Mc in general; e.g. for m = 6, see Appendix A for some discussion).

Remark 8.5.11. Recall the non-degenerate pairing ψ : Hm∗(Vc)×Hm∗(Vc)→ H2m∗(Vc).

(1) If m∗ = 1, then ψ is essentially the Weil pairing on the elliptic curve J(Vc)/Q. Here
ψ is symplectic and

∧2H1(Vc) ∼= Qℓ0(−1) is trivial up to Tate twist (cf. the fact that
α̃pβ̃p = 1 if p ∤ N).

(2) If m∗ = 2, then ψ is the symmetric intersection pairing on the cubic surface Vc. Since 2
is even, H2(Vc,Qℓ0(1))

∼= Pic(Vc ×Q)⊗Qℓ0 splits as [KVc ]Z⊕K⊥
Vc
. It is the primitive

part K⊥
Vc

= [−H]⊥ (which is isomorphic to Mc) that defines L(s, Vc) (a degree 6 Artin
L-function).

(3) If m∗ = 3, then ψ is again symplectic. It is likely closely related to the Weil pairing
associated to (Ac, λc), where λc : Ac → A∨

c denotes a certain principal polarization
defined in terms of Vc. (For one possible construction of λc, see [DLR17, Remark 4.2,
par. 2, involving a “difference morphism” on F (−)].)

8.5.2 A statistical discussion of our families of L-functions

We now discuss the expected statistical nature of our families of L-functions. Fix F with
m ∈ {4, 6, 8, . . . }, and for convenience, assume Conjecture 8.2.11 (HW2) (but not (HWSp)).

The Sarnak–Shin–Templier framework

Let πc := πMc . Then πc should be cuspidal for almost all c. Indeed, the proof of Proposi-
tion 8.3.12 shows (unconditionally) that p−m

∑
c∈Fm

p
1p∤F∨(c) · |λ̃c(p)|2 = 1+O(p−δ) as p→∞.

It follows that as Z →∞, we have

1 +O(Z−δ′) =
1

Zδ · (2Z)m
∑
p≤Zδ

(log p) ·
∑

c∈[−Z,Z]m
1F∨(c)̸=0 · |λ̃c(p)|2

≥ 1 +Oϵ(Z
−δ/2+ϵ) +

1

(2Z)m

∑
c∈[−Z,Z]m

1F∨(c) ̸=0 · 1πc is not cuspidal,

by a “representation-theoretic” analysis of (the poles at s = 1 of) the L-functions L(s,Mc ⊗
M∨

c ) via (HW2), Observation 8.2.15, and [IK04, §5.6’s Exercise 6 and §5.7’s Theorem 5.15].
So #{c ∈ [−Z,Z]m : F∨(c) ̸= 0, and πc is not cuspidal} ≪ Zm−δ′′ .
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Similarly (still under (HW2)), via other (unconditional) local moments from the proof of
Proposition 8.3.12, one can statistically analyze the poles of L(s,Mc ⊗Mc), L(s,Mc ∧Mc)
at s = 1. Such an analysis (when combined with the previous paragraph) reveals the family
c 7→ πc to be essentially cuspidal, self-dual, and symplectic (in the sense of [SST16, p. 538,
(i)–(iii)]), so that ords=1 L(s, πc,

∧2) = −1 almost always.

Remark 8.5.12. The computations above are closely related to “vertical” or “local” monodromy.
Since V is smooth of even dimension m− 2 ∈ {2, 4, . . . }, with hyperplane sections Vc of odd
dimension m∗ ∈ {1, 3, . . . }, a general result of Deligne (see [Kat04, Introduction, pp. 1–2],
around the line “For n odd, the monodromy group Gd is. . . ”) shows that the “Zariski closure
of the monodromy of the local system”

c 7→ Hm∗(Vc)/H
m∗(V ) = Hm∗(Vc)

of rank N1 =
2m∗+2+2(−1)m∗

3
∈ {2, 10, . . . } on the space of “smooth, degree d = 1, hypersurface

sections” (in [Kat04]’s setup7) is the “full symplectic group” Sp(N1). (Cf. [Kat13, §8,
“hypersurface examples”], which are of the same spirit.)

In particular, by Deligne–Katz equidistribution ([Kat13, Theorem 5.1], as applied in
[SST16, §2.11]), our family has Sato–Tate group Sp(N1,C) in the sense of [SST16].

In any case, by [SST16, Conjecture 2], the low-lying L-function zeros associated to our
family should have symmetry type consisting of SOeven and SOodd; cf. the discussion on
[SST16, p. 549] for Dwork families of odd degree, i.e. with “n even”. Thus in all RMT-type
predictions, the family c 7→ L(s, πc) should have “symmetry type” composed of SOeven and
SOodd; cf. [SST16, pp. 540–541, paragraph discussing “moments of L-values”]. (The root
numbers are probably evenly distributed, but their distribution is actually irrelevant to our
main results; see Remark 8.5.15 below.)

Remark 8.5.13. RMT-type predictions should apply equally well to all “natural” parameteri-
zations of a given family, in the spirit of Remark 8.3.16(3) and [SST16, p. 535, Remark (i);
and p. 560, second paragraph after (25)]. (See e.g. Conjecture 8.2.28 (RA1), a mean-value
prediction over certain “nearly homogeneous” regions B(Z) ∩ {a mod n0}, where one can
think of B(Z) as being “truly homogeneous, but with small coefficients”.) In this regard,
multi-parameter families raise some interesting questions (involving “lopsidedness” and
“singularities” of weights) that are subtler than those for single-parameter families.

Remarks on (R1)–(R2) and (RA1)

In §8.3.3, we applied the RMT-based heuristic behind [CFZ08, §5.1, (5.6)] to state certain
Ratios Conjectures (R1)–(R2) and (RA1).

Remark 8.5.14. For a discussion of uniformity in σ, t, see [CS07, (2.11b)–(2.11c)]. In particular,
(2.11b) suggests that in (R1)–(R2) and (RA1), we could take σ − 1/2 as small as Ω(1/ logZ).
But it is cleaner for us to fix σ > 1/2—which is good enough for us anyways, since we assume
power-saving error terms in (R1)–(R2) and (RA1).

7we take the “universal family” of smooth hyperplane sections, but a “sufficiently general Lefschetz pencil”
would also suffice according to [Kat04]
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Remark 8.5.15. The Ratios Conjectures involve not just the low-lying zeros of L(s, πc), but
rather “all zeros up to height ≈ 1” (morally). Nonetheless, one still expects a remarkable
degree of universality: see e.g. [CFZ08, Conjectures 5.3–5.4] for orthogonal examples of the
Ratios Conjectures, where the presence of “L’s in the denominator” on the left-hand side
leads to “polar factors of ζ(2s)” on the right-hand side, just as in (R1)–(R2) and (RA1).

Interestingly, root numbers and functional equations play no role in the “recipe” for
1/L. This somehow reflects the naive intuition that 1/L is “more random” than L. In other
aspects, though, 1/L-moments over orthogonal families seem loosely analogous to L-moments
over symplectic families (and vice versa).

8.6 Miscellaneous writeups

8.6.1 Poles given by the original variety

Now assume F is diagonal. Then one can “compute” L(s, V ); see Lemma 8.6.7 below.

Definition 8.6.1. Given a nontrivial multiplicative character χ : F×
q → C×, define the

standard Gauss sum g(χ) :=
∑

x∈Fq
χ(x)ep(TrFq/Fp(x)), and let g̃(χ) := g(χ)/q1/2.

Proposition 8.6.2 (See e.g. [IR90, Chapter 10, Theorem 2]). Let q be a power of a prime
p ∤ 3F1 · · ·Fm. If q ≡ 2 mod 3, then E(q) = 0. If q ≡ 1 mod 3, and χ3 = χ3,q : F×

q → µ3 ⊆ C×

denotes either of the two multiplicative characters of order 3, then

E(q) = q−1+m/2
∑′

a

χ3(F
−a1
1 · · ·F−am

m )g̃(χa13 ) · · · g̃(χam3 ),

where ai ∈ {1,−1} and 3 | a1 + · · ·+ am.

Although over each prime p there are two possible choices of “compatible” χ3,q (such that
χ3,qr = χ3,q ◦NFqr/Fq whenever q ≡ 1 mod 3), the cyclotomic field K := Q(ζ3) itself (in which
the χ are valued) only has finitely many automorphisms—and thus provides a way to glue
different p together, via the cubic residue symbol χ3,℘.

Definition 8.6.3. For a prime ℘ ∤ 3 of K with residue field k := OK/℘, and a unit residue
x ∈ k×, let χ3,℘(x) ∈ µ3 with χ3,℘(x) ≡ x(N℘−1)/3 mod ℘. Then, for each integer r ≥ 1 and
given field extension ℓ/k of degree r, let χ3,℘r := χ3,℘ ◦Nℓ/k be the unique character ℓ× → µ3

extending χ3,℘ : k
× → µ3.

Since g(χ) is well-defined (i.e. independent of the realization of Fq), we can make sense of
g(χ3,℘r) by identifying ℓ with FN℘r , i.e. g(χ3,℘r) :=

∑
x∈ℓ χ3,℘r(x)ep(Trℓ/Fp(x)). Now by the

previous proposition (though there might be a more conceptual approach phrased in terms of
the K-automorphisms of VK), the indices a decompose into pairs {a,−a}, each defining a
Hecke L-function over K. This is the content of the following result:

Corollary 8.6.4. For good primes p ∤ 3F1 · · ·Fm, we have

Lp(s, V ) := exp

(
(−1)m−2

∑
r≥1

Ẽ(pr)(p−s)r/r

)
=
∏′

{a,−a}

∏
℘|p

(1− ψa(℘)(N℘)
−s)−1,
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where ℘ denotes a prime in OK and ψa is the unique primitive Hecke character on K
satisfying ψa(℘) = χ3,℘(F

−a)(−g̃(χa13,℘)) · · · (−g̃(χam3,℘)) for all ℘ ∤ 3F1 · · ·Fm.

Remark 8.6.5. For the construction of the (classical) Hecke characters ψa, see [Wei52].
(Actually, [Wei52] might only yield a possibly imprimitive character of conductor dividing
(3F1 · · ·Fm)∞, but this suffices.) Strictly speaking, [Wei52, p. 489, Theorem] only addresses
the product of g’s, but the Artin symbol ℘ 7→ χ3,℘(F

−a) is harmless by class field theory
over K (cf. [Wei52, final paragraph of p. 494, regarding the L-function of a diagonal curve]).

Remark 8.6.6. Each ψa is Q-valued, i.e. “algebraic” (also called “type A0”). In fact, one can

show that each “un-normalized” Hecke character N
m/2
K/Q · ψa maps into K.

Proof. Let T = p−s. Using the Hasse–Davenport relation [IK04, p. 275, Theorem 11.4] and
χ3,℘r = χ3,℘ ◦Nℓ/k as in [Wei49, p. 506, (8)] gives

(−1)m
∑
r≥1

Ẽ(pr)T r/r = −
∑′

a

log(1− χ3,℘(F
−a)(−g̃(χa13,℘)) · · · (−g̃(χam3,℘))T ),

for either choice of ℘ | p, if p ≡ 1 mod 3. Similarly, if p ≡ 2 mod 3 (and ℘ = (p)), then

(−1)m
∑
r≥1

Ẽ(pr)T r/r = −1

2

∑′

a

log(1− χ3,℘(F
−a)(−g̃(χa13,℘)) · · · (−g̃(χam3,℘))T 2),

in which case the automorphism x 7→ xp of k equates the contributions from a and pa ≡
−a mod 3 (because F−a ≡ F−pa mod p and g(χ3,℘) = g(χp3,℘)), thus removing the factor of
1/2. The desired formula for Lp(s, V ) follows.

Lemma 8.6.7. With the above notation, L(s, V ) =
∏′

{a,−a} L(s, ψa). Furthermore, L(s, V )

has a pole at s = 1 of total order rF ≥ 0 equal to the number of pairs {a,−a} such that
F−a1
1 · · ·F−am

m ∈ (Q×)3 and
∑

i∈[m] ai = 0.

Remark 8.6.8. For m odd, or for typical F , we have rF = 0. For F Fermat with m even,
rF = 1

2

(
m
m/2

)
=
(
m−1
m/2−1

)
(so that e.g. rF = 3 if m = 4, and rF = 10 if m = 6).

Proof. First, to fully prove the factorization on the nose, combine [And86, Theorem 8(II),
Theorem 6, and Corollary 5.7.2]; here Theorem 8(II) identifies MV (−1) (and hence MV ) as
a motive “potentially of complex multiplication type” (which can therefore be analyzed by
Theorem 6 and Corollary 5.7.2).

It remains to compute rF := − ords=1 L(s, V ). But work of Hecke (see e.g. [IK04,
Theorem 3.8] for the imaginary quadratic case we are in) immediately implies that

rF = #{pairs {a,−a} : ψa is trivial}.

Now fix a. Since g̃(χ3)g̃(χ
−1
3 ) = 1, the “defining formula” for ψa (from the previous corollary)

simplifies, telling us that ψa(℘) = χ3,℘(F
−a)(−g̃(χ3,℘))

∑
ai for all but finitely many primes ℘.

If F−a ∈ (Q×)3 and
∑
ai = 0, then certainly ψa must be trivial.

Conversely, suppose ψa is trivial; then χ3,℘(F
−a)(−g̃(χ3,℘))

∑
ai = ψa(℘) = 1 for almost

all ℘. For such ℘, cubing yields (−g̃(χ3,℘))
3
∑
ai = 1. If

∑
ai ̸= 0, then −g̃(χ3,℘) would be
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restricted to lie in a finite set, contradicting the known equidistribution of Kummer sum
angles. (Alternatively, it should suffice to use Stickelberger’s factorization [Lan90, Chapter 1,
Theorem 2.2] of g(χ3).) Thus

∑
ai = 0, so χ3,℘(F

−a) = 1 for almost all ℘, from which
Chebotarev implies F−a ∈ (Q×)3, completing the proof.

Remark 8.6.9. For m = 4, a simpler treatment is possible via Artin representation theory
[Jah14, pp. 213–216], since for each a, the g’s cancel out:

∑
ai is 0 mod 3 and m mod 2, and

thus 0. (For example, if F = x31 + · · ·+ x34, then L(s, V ) = ζQ(ζ3)(s)
3.) For m = 6, though,

we need to address the “transcendental motive” (in the language of [SD14]) associated to
a = ±1, even though it does not ultimately contribute poles.

8.6.2 Typical analytic ranks, versus rF

For diagonal F , Lemma 8.6.7 expresses L(s, V ) as a product of Hecke L-functions and
determines the order rF of the pole at s = 1. (For arbitrary Pm−1

Q -smooth F , the discussion
below should still hold conditionally on automorphy for L(s, V ).) Naively, rF should have
something to do with special subvarieties of V (cf. Chapter 6). This is partly true, but the full
story, via the global Tate conjecture for codimension-(1 +m∗)/2 cycles on V modulo suitable
equivalence (e.g. Pic(V ) for m∗ = 1, when V is a cubic surface), seems to involve other cycles
on V as well. (One should perhaps work with homological or numerical equivalence. We will
not be too precise about such technical questions on algebraic cycles, including base change
or rationality issues.)

When F∨(c) ̸= 0, let rc be the analytic rank, i.e. central order of vanishing, of L(s, πc).
The following may not be strictly necessary, but seems good to discuss:

Conjecture 8.6.10 (Nagao-type conjecture). If m ∈ {4, 6}, then for almost all c ∈ Zm with
F∨(c) ̸= 0, we have rc ∈ {rF , rF + 1}.

Remark 8.6.11. For typical F , Lemma 8.6.7 says rF = 0, and we certainly typically expect
that rc ∈ {0, 1}. For specific F , comparing typical rc with rF might require BSD-on-average
or similar. As some algebraic evidence for m = 4 (i.e. m∗ = 1), [Sta16] has shown (for any
fixed smooth cubic surface V ) that the restriction map Pic(V )→ Pic(Vc) is typically injective
as c varies, so that typically rc ≥ rF .

For m = 6 (i.e. m∗ = 3), is it true that the relevant restriction map is typically injective?
(If not, then the conjecture above must be modified according to the dimension of the kernel.)

We now analyze the maximal linear Q-subvarieties for m ∈ {4, 6} when F is Fermat, and
explain (with the m = 4 example) why robust numerical testing requires at least a bit of care.

Example 8.6.12. For m = 4 and F Fermat, the genus one curve Vc has three rational
parametric points coming from the three rational lines of the cubic surface V , so (taking one
of the three to be the origin) we certainly expect J(Vc) to typically have (algebraic) rank at
least 3− 1 = 2. Naive random sampling of Vc (with ∥c∥∞ ≤ 6) leads to a rank distribution
of [5, 23, 154, 166, 35, 3, 0, 0, . . . ], at first suggesting typical (analytic) ranks 2, 3.

However, rF = 3. A more careful computation, sampling with ∥c∥∞ ≤ 10 and avoiding
the locus

∏
i<j(ci− cj) = 0 (which arose from guesswork—but it would be good to check how

Pic(V )→ Pic(Vc) behaves for such c), gives a rank distribution of [0, 0, 10, 70, 42, 1, 0, 0, . . . ],
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suggesting instead typical (algebraic) ranks 3, 4, in line with Conjecture 8.6.10. Probably we
missed a typical third point in the image of Pic(V )→ Pic(Vc), which could be computed in
principle from [Bro09, p. 139, §8.3.1] (which explicitly describes Pic(V ), or equivalently—by
[Jah14, top of p. 211]—Pic(VQ)

GQ , since V (AQ) ̸= ∅).
(Disclaimer: Nearly all of the ranks computed as part of the data should be correct, but

a small portion may be incorrect due to compromises made by typical algorithms, or due to
the fact that verifying large analytic ranks remains an open problem.)

Example 8.6.13. For m = 6 and F Fermat, Vc has 15 rational parametric lines coming
from the 5 · 3 · 1 = 15 rational 2-planes of the cubic fourfold V (one for each partition J of
[6] into 2 + 2 + 2). These lines on Vc (i.e. points on F (Vc)) correspond to points on A(F (Vc))
(taking one of the points to be the origin of Ac); what are the relations between these points?

By [CG72, p. 286], the analysis might involve configurations like Vc ∩ {x1 + x2 = 0} ∩
{x3 + x4 + x5 + x6 = 0} (a union of three coplanar lines). There are

(
6
2

)
= 15 such triangles.

Each line lies in 3 triangles. Thus we can sequentially “remove a line from an existing triangle”
≥ 5 times (so that at the end, the remaining ≤ 10 lines “span” or “triangulate” the rest).
This may be suboptimal; it is a question of linear algebra to find a “triangle-reduced basis”.

What other “typical cycles” on Vc (coming from V ) are there?

Remark 8.6.14. In both cases, at least some of the rational parametric cycles on Vc come
from linear spaces on V of the largest possible dimension (in the sense of §6.3).

Remark 8.6.15. For m = 6, it may be worth testing analytic ranks numerically, perhaps
through the logarithmic derivative L′/L. (Completely computing local L-factors of cubic
threefolds seems to quickly get expensive. But to test ranks, one should only need to work
with small moduli.) Notably, [SD67, bottom of p. 290, with r = 2] provides a relevant variant
of BSD “supported by unpublished results of Bombieri and Swinnerton-Dyer for the cubic
threefold” [SD67, p. 291]; I cannot tell if these “unpublished results” are more numerical or
theoretical, however.
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Chapter 9

Variations

§9.1 discusses problems inspired by Hypothesis HW, GRH on average, and large sieves, in
the spirit of §4.1.

§9.2 discusses questions related to “perturbing” the delta method—which seems to be an
interesting direction of research (cf. [MV19]).

In §9.3, we speculate on some Diophantine problems that may or may not be within reach
under standard hypotheses similar to those in Chapter 8.

9.1 Problems inspired by Hypothesis HW

9.1.1 Problems with a cubic flavor

The cubic convexity barrier

Beating the Hua bound (or “breaking convexity” as [Woo95] might say) lies in the following
family of (probably equivalent) problems:

(1) To show that the (smoothly weighted) count of solutions x ∈ Z6 to x31 + · · ·+ x36 = 0,
in the region ∥x∥ ≪ X, is O(X7/2−δ3) for some δ3 > 0.

(2) To show that the analogous smooth count for x31 + · · · + x38 = 0 satisfies a Hardy–
Littlewood asymptotic cX5 +O(X5−δ4) with a power saving δ4 > 0.

(3) In general, for s ≥ 4, to show that the analogous count for x31 + · · ·+ x32s = 0 satisfies a
Hardy–Littlewood asymptotic of the form cX2s−3 +O(X3s/2−1−δs) for some δs > 0.

These “even Fermat bounds” would all follow from an improvement of the current generic
cubic Weyl sum bound of Oϵ(X

3/4+ϵ), which appears quite difficult to beat; see e.g. [HB10]
assuming abc. In any case, the beauty of [Hoo86b,Hoo97,HB98] lies in the averaging over
arcs (and the further averaging over moduli going beyond Kloosterman), which is morally
independent of the issue of pointwise Weyl bounds.

The equivalent family above would also imply similar bounds for odd numbers of variables,
e.g. an upper bound for “2s = 5” (a problem raised by [Bom09]). At first glance, there does
not appear to be an equivalent Diophantine problem involving 4 variables (where “s = 2”), or
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any odd number “2s”, although the general “restricted arcs” form of the 4 variable problem
(see problem (5) below) could in principle pare away most, if not all, but the most extreme
minor arcs for s ≥ 3.

Other problems with a cubic flavor

Besides the “familiar” or “classical” Fermat cubic problems above, other natural problems in
the same vein include the following:

(4) To show that each smooth projective cubic surface V (F ) over Q has OF,ϵ(X
3/2+ϵ)

solutions x≪ X away from its rational lines—or at least OF (X
12/7−δ), to beat [Sal15]’s

bound. (Note however that one of the nice features of [Sal15] is uniformity over F ,
which we do not consider here.)

(5) To show that x31 + · · · + x34 = 0 has Oϵ(X
2+ϵ) solutions, in a way that generalizes to

show that uniformly over M ≤ X3/2, we have∫
θ∈M(M)

dθ |T (θ)|4 ≪ϵ X
ϵ · (X +M2/X),

where T (θ) :=
∑

|x|≤X e(θx
3) and M(M) :=

⋃
q≤M{θ ∈ R/Z : |qθ − a| ≤M/X3}.

(Unconditionally, [Brü91] obtained Oϵ(X
ϵ) · (X +M2/X +M7/2/X3).)

(6) For k ∈ {3, 4}, to show that the equation x21+x
3
2+x

k
3 = y21+y

3
2+y

k
3 , with each monomial

restricted to be of size at most N , satisfies a (smoothly weighted) Hardy–Littlewood
asymptotic of the form cN1+2δk +Oϵ(N

1+δk+ϵ), where δk := (1/2 + 1/3 + 1/k)− 1.

(7) For k ∈ {3, 4}, to show that x21 + x32 + xk3 positively represents all n ≤ N but an
exceptional set of size Oϵ(N

1−δk+ϵ)—which [Brü91] proved unconditionally for k = 5,
and obtained weaker bounds towards for k = 3, 4.

Remark 9.1.1. Progress on (4) would already be interesting for “somewhat general” (e.g. di-
agonal) F ’s. But for cubic surfaces V (F ) with Q-lines, unconditional bounds beyond [Sal15]
are already known—e.g. Oϵ(X

4/3+ϵ) for the Fermat cubic.
(Note that general diagonal V (F )’s have no Q-lines.)

Remark 9.1.2. The bound in (5), if true, may or may not be optimal (up to ϵ). It is optimal
for M = X3/2, at least.

Remark 9.1.3. The asymptotic error term Oϵ(N
1+δk+ϵ) in (6), if valid, would likely be optimal

up to ϵ, due to “trivial loci” such as x = y. It could be interesting to try to obtain a “secondary
term” asymptotic that precisely captures the influence of such loci; cf. [Vau15, Theorem 1.4]
regarding the mixed ternary forms x21 + x22 + xk3 for k ≥ 3.

Remark 9.1.4. By mimicking [Brü91], one can show that the bound in (5) implies the
“exceptional set bound” in (7); see [Wan21e, Theorem 1.12] for details. It is also reasonable
to expect “(5) to imply (6)” and “(6) to imply (7)”—at least morally—but such expectations
would need to be carefully checked.
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Conditional approaches

The bounds in (1)–(3), and the bound in (4) for diagonal F , can be established conditionally
under Hypothesis HW for smooth projective cubic hypersurfaces of dimension 3, 5, 2s− 3,
and 1, respectively, in certain families. See [Wan21c, Theorem 1.28] (whose philosophy we
sketched in §4.1) for a unified treatment, which also clarifies how one may “relax” Hypothesis
HW.

Similarly, under Hypothesis HW for smooth hyperplane sections of V (x31 + · · ·+ x34), one
can mimic [Wan21c, Theorem 1.28] to prove the bound in (5), and consequently the bound in
(7). Again, some “relaxation” of Hypothesis HW is possible; see [Wan21e, Theorem 1.6] for
details. (The situation for (6) may well be similar, but would need to be carefully analyzed
and written up.) So at least in (5) and (7), a tiny improvement over [Brü91]’s bounds
should already be possible using existing general automorphic large sieve inequalities; see
[Wan21e, Remark 1.9] for more details. But truly satisfying progress on any of (1)–(7) will
probably (and hopefully) require significant new ideas.

Remark 9.1.5. In the absence of progress on GRH itself, the “GRH-on-average philosophy”
provides one of the most alluring approaches towards (1)–(7).

However, other ideas could also plausibly lead to interesting progress on (1)–(7). For
example, (4) might be susceptible to clever slicing methods (e.g. those developed by Salberger
or Heath-Brown), especially when combined with advances in the theory of irrational varieties
(including upper-bound sieves and elliptic-curve statistics).

From another direction, Bourgain and Demeter (among others) have applied decoupling
theory on curves (for instance) to prove interesting point-counting bounds, often even in
the absence of translation invariance. Although the most striking applications of decoupling
to classical Diophantine problems so far seem to have been restricted to degree ≥ 5 or
codimension ≥ 2, the full power of decoupling remains to be understood, and one cannot
yet rule out the possibility of applying decoupling (or one of its non-archimedean allies, as
developed by Wooley and others) towards (1)–(7).

9.1.2 On families of quadrics

Aside from cubic problems, quadratic problems—especially those in families—provide an
immediate opportunity for deeper exploration via the delta method. Such problems might
also play a role in, or at least relate to, Diophantine analysis on varieties that are not complete
intersections.

Example 9.1.6. Consider Manin’s conjecture for the conic bundle a1x
2
1 + a2x

2
2 + a3x

2
3 = 0 in

P2×P2. ([LB15,BBS18] have expressed the opinion that this seems “out of reach” of existing
techniques; the analog in P3 × P3 is known [BHB20]. On the other hand, Heath-Brown may
have a forthcoming proof; see [HB22, final paragraph of §1].)

The whole variety E itself (i.e. the total space) is probably not a complete intersection.
But the “left-hand side” above certainly defines a family of ternary quadratic forms F0.

Now recall that point counting on a ternary affine quadric F0 = b with F0 fixed and
definite—or with (F0, b) fixed and F0 indefinite—is basically understood, but varying F0 or
b in general can get tricky [FI13]. Nonetheless, in the homogeneous case b = 0 above, the
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situation might be better—with a certain interesting family of classical (Dirichlet or Artin)
L-functions plausibly relating to Manin’s conjecture for E.

9.1.3 On intersections of quadrics

For simplicity, we discuss only individual smooth projective complete intersections W :=
V (F1, . . . , FR) in Pm−1

Q with m ≥ 5 and R := 2 and degF1 = · · · = degFR = d := 2, though
there are certainly many other interesting (affine or projective) varieties one could consider
(individually or on average).

Given F := (F1, . . . , FR)/Z, fix w ∈ C∞
c (Rm) supported away from 0. For X ≥ 1, let

NF ,w(X) :=
∑

x∈Zm w(x/X) · 1F (x)=0, and if m = 5, let N ′
F ,w(X) denote the corresponding

weighted count restricted x ∈ Zm not lying on any Q-line of W .
For references on what is known about the Hasse principle for W , we refer the reader

to the introduction of [Vis19]. When m = 5, the “Hasse principle up to Brauer–Manin” is
unknown but conjectured to hold, and from a quantitative point of view the best we know in
general is Salberger’s (possibly unpublished) bound N ′

F ,w(X)≪F ,ϵ X
3/2+ϵ.

Let D ∈ Z[c] denote a suitable discriminant polynomial, so that a given hyperplane
section Wc of W is singular if and only if D(c) = 0. Let

SF ,c(q) :=
∑′

a∈(Z/q)R

∑
x∈(Z/q)m

eq(a · F (x) + c · x)

(cf. the complete exponential sums defined in [HBP17]), where we restrict a to be primitive

modulo q. Then let S̃F ,c(q) := q−(m+R)/2SF ,c(q), let Φ(F , c, s) :=
∑

q≥1 S̃F ,c(q)q
−s, and let

Ψ1(F , c, s) =
∑

q≥1 bF ,c(q)q
−s denote a first-order approximation of Φ(F , c, s) in the sense

suggested by Definition 3.2.9.
Optimistic preliminary calculations (subject to errors or unforeseen difficulties) suggest

the following conjecture:

Conjecture 9.1.7. Fix F , w,Ψ1. Let Y := Xd/(1+1/R) = X4/3. Assume that for all X ≥ 1
and Z ≥ Y/X = X1/3, and for all N ≪ Y and intervals I ⊆ [N/2, 2N ], we have a uniform
bound of the form ∑′

c∈[−Z,Z]m

∣∣∣∣∣∑
q∈I

bF ,c(q)

∣∣∣∣∣
2

≪ϵ Z
ϵmax(Zm, Y ) ·N,

where we restrict to c with D(c) ̸= 0. Also assume the existence of a “fully satisfactory”

two-dimensional Kloosterman method. Now let θ := dR(m−1−R)
2(R+1)

= 2(m−3)
3

. Then

(1) N ′
F ,w(X)≪ϵ X

θ+ϵ = X4/3+ϵ if m = 5;

(2) NF ,w(X)≪ϵ X
θ+ϵ = X2+ϵ if m = 6; and

(3) NF ,w(X) = cXm−dR + Oϵ(X
θ+ϵ) = cXm−4 + Oϵ(X

2(m−3)/3+ϵ) if m ≥ 7 (with c = cF ,w
being the usual Hardy–Littlewood prediction if m ≥ 8, and a more complicated constant
that also incorporates Q-planes on W if m = 7).
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Remark 9.1.8. The “elementary GRH on average” assumption above, and that in [Wan21c,
Theorem 1.28], should belong to a wider framework of “average hypotheses” over “natural but
thin” geometric families. Hopefully at least one such family is sufficiently rich yet tractable
to inspire significant new ideas.

Remark 9.1.9. Over D(c) ̸= 0, the Hasse–Weil L-functions L(s,Wc) are quite rich. Roughly
speaking, eachWc (after passing to certain standard ℓ-adic Galois representations) corresponds
(up to Tate twist) to an abelian variety of dimension (m − 3)/2 if 2 ∤ m, and to an Artin
representation of dimension m if 2 | m. (See e.g. [BT16, Theorem 2.1] or [Rei72].)

Remark 9.1.10. The F ’s considered in [HBP17] define singular W ’s (with singular loci of
positive dimension, in fact), so are not included in the conjecture above. But it would be
interesting to see how much further one can push [HBP17] under automorphy and GRH for
varieties “related to” hyperplane sections of W . (The hyperplane sections Wc for [HBP17]
are all singular, but some desingularization might be possible.)

Remark 9.1.11. The “two-dimensional Kloosterman method” in [HBP17] is based on “pos-
itivity” (cf. the works [Hoo86b, Hoo97] avoiding [DFI93, HB96]), and hence is not “fully
satisfactory” (in that it does not readily generalize to arbitrary F ’s). Finding a suitable “fully
satisfactory” generalization, even in the rational function field case (where the one-dimensional
Kloosterman method is “trivial to set up”), seems to be an interesting but challenging prob-
lem; see [Vis19] for some fascinating progress (with fairly good cancellation—but one might
optimistically hope for even more).

Remark 9.1.12. At least for complete intersections, it might be interesting to try “lifting”
the Kloosterman method to the setting of universal torsors, but this could be difficult (and
maybe only directly relevant to W ’s of small dimension, e.g. projective surfaces).

9.2 Enlarging or deforming the delta method

For a nice historical introduction to [DFI93,HB96]’s delta method, we refer the reader to
[IK04, Chapter 20]. In the rest of §9.2, we discuss some possibilities—mostly far from being
fully understood so far—for modifying or perturbing the delta method.

9.2.1 Deforming or enlarging the search space

Let (F,w) be a smooth pair for some Pm−1
Q -smooth homogeneous F ∈ Z[x1, . . . , xm] of degree

≥ 1. Then we have

(1 +OA(Y
−A)) · NF,w(X)

Xm−degF
= X−m+degFY −2

∑
n≥1

∑
c∈Zm

n−mSc(n)Ic,X,Y (n)

for all (X, Y ) ∈ R2
>0, where for all (c, n) ∈ Rm × R>0, we let

Ic,X,Y (n) :=

∫
x∈Rm

dxw(x/X)h(n/Y, F (x)/Y 2)e(−c · x/n) (following [HB96]).

For simplicity, we have restricted to homogeneously expanding weights x 7→ w(x/X), but
it could be useful to work more generally. Note the following:
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(1) given F,w,X, the weighted count NF,w(X) is independent of Y ; and

(2) to explore the solutions to F = 0, we have both parameters w,X at our disposal.

Changing the region

At a basic level, we have already seen the possible benefits of (2) in Chapter 2 (which is
based on [Dia19]). But in Chapters 6–8, we fixed Y := X3/2, even as we let w vary; perhaps
one could get sharper results by letting Y vary with w.

Changing the modulus cutoff parameter

Typically one chooses Y ≍F,w X(degF )/2; what if one perturbs Y by X±δ, or (logX)±δ, or. . . ?
[Mun15,MV19] have made a first step in this direction. These works are based on modifying
Ic,X,Y (n).

But we do not seem to have a deep understanding of what choices should work. Concep-
tually, there are at least two natural problems one could look at. (For concreteness, we fix
(degF,m) = (3, 6), but the discussion below certainly generalizes easily.)

(1) Given X ′ ≪ X, count points x ≪ X with F (x) ≪ (X ′)3 such that F (x) = 0. (The
basic question here is whether the condition F (x)≪ (X ′)3 can be used to give better
integral estimates, or not. A tantalizing open question is to recover the Hua bound
Nx31+···+x36(X)≪ϵ X

7/2+ϵ unconditionally using the delta method.)

(2) Given a separable form F = F1(x1) − F2(x2), and X1, X2 ≥ X, count points with
∥x1∥ ≍ X1 and ∥x2∥ ≍ X2 with F1(x1)≪ X3 and F2(x2)≪ X3, such that F1(x1) =
F2(x2). (For variance computations when F1 = F2, we need to let both X1, X2 grow the
same amount; for the Hasse principle for F , it suffices to simply let one of X1, X2 grow
and keep the other fixed, e.g. X2 = X. It could also be worth splitting F in different
ways, e.g. not just 6 = 3+3 or 6 = 3+1+1+1 but also in between, like 6 = 4+1+1.)

Question 9.2.1. In both cases, there is freedom in how we choose the modulus cutoff Y in
the delta method; what are the best choices?

Remark 9.2.2. Even after one has chosen Y , it is unclear what the “best form” of the
delta method is. For (1), after choosing Y := (X ′)(degF )/2 for a certain X ′ ≪ X, [MV19]—
inspired by [Mun15]—take the Fourier transform of U(X3ξ/Y 2)h(r,X3ξ/Y 2) (and then plug
in ξ = F (x̃)) to get something closely resembling a “heuristic circle method with denominators
n≪ Y ”. Can we do better by explicitly “remembering” the condition F (x̃)≪ Y 2/X3 (given
that the Fourier transform “forgets” it)?

And how does the technique for (1) generalize to (2)? Should one apply the two-
variable Fourier transform to U(X3ξ1/Y

2)U(X3ξ2/Y
2)h(r,X3[ξ1 + ξ2]/Y

2) (and then plug
in ξi = Fi(x̃i)), moving away from the classical “heuristic” circle method (but still likely
having decay in u1, u2, u1 − u2 “localizing” towards the classical u1 = u2 = u), or should
one directly reduce to the “heuristic” (smoothed) circle method and deal with the weight∏
U(X3Fi(x̃i)/Y

2) later in the integral estimates?
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9.2.2 Smoothing or averaging

Given an expression from the delta method, one could try to include it into some kind of
weighted average—whether it be over archimedean or adelic parameters, or over number
fields or varieties, or perhaps (maybe by positivity) even over expressions without immediate
Diophantine interpretation. Ideally, one would like to preserve as much information as possible
about the original varieties of interest.

Remark 9.2.3. One might hope to somehow “deform and smooth” (in the Fourier-analytic
spirit of e.g. [Qu07, Lemma 3.2] or [Sel89, p. 169 (p. 10 in Paper 12), use of Parseval]) to
reduce the RMT-based input in Theorem 8.4.3 (or at least in the more qualitative parts
thereof) to statements about low-lying zeros—though I currently do not see how to do so.

Note that on the “right-hand side” of the delta method, the (X, Y,w)-dependence essen-
tially lies in the factors (XdegF/Y 2) ·X−mIc,X,Y (n).

Question 9.2.4. Are there interesting examples where one can average over some or all of
X, Y,w in the delta method to simplify qualitative Diophantine analysis?

As an oversimplified toy example, consider the following X-averaging of a Mellin transform:∫
X

d×X g(X)

∫
n

d×n f(n/X)ns =

∫
n,v

d×n d×v g(n/v)f(v)ns

=

∫
v

d×v f(v)

∫
n

d×n g(n/v)ns,

where v := n/X. Even if f is mysterious, the X-averaging moves the n-dependence away
from f , leaving the Mellin decay in |s| to be dictated by the smoothness of g.

Remark 9.2.5. In fact, such “convolution creation” has appeared before in work on delta-like
methods.

In order to prove NF,w(X) ≪ϵ X
3+ϵ under Hypothesis HW, [Hoo97, p. 180, (17)] uses

dyadic averaging in X to avoid the interesting but harder derivative estimates of [HB98]
(who does not smooth at all). The point is that without smoothing, the trivial n-derivative
bounds on Ic(n) would have a fatal loss as n→ 0 (i.e. at the end of the argument, the final
n-exponent would become negative, whereas it was zero before differentiating).1 However,
with averaging, the derivative on n can be moved to a harmless “smoothing” factor,2 without
Heath-Brown’s improved n-derivative bounds.

Similarly, one could likely simplify parts of [Wan21c] (especially in archimedean aspects,
at least in the m-even Fermat case) by dyadic (or slightly larger) smoothing.

Remark 9.2.6. We call the toy example above “oversimplified” because while the factor f(n/X)
only depends on n/X, the actual factor (XdegF/Y 2) ·X−mIc,X,Y (n) of interest depends on
n/Y,Xc/n,XdegF/Y 2 (and F,w)—though at least if degF = 2 and we restrict to Y = X,
then (XdegF/Y 2) ·X−mIc,X,Y (n) depends only on n/X, c (and F,w).

1This is why [Hoo86b] needed to separately consider small n, i.e. “junior arcs” [Hoo86b, p. 81, §9], getting
a final exponent of 60/19 + ϵ = 3.15 . . . + ϵ instead of 3 + ϵ. See [Hoo97, p. 176] for Hooley’s commentary.

2Strictly speaking, Hooley does not smooth, but rather uses a positivity-based design, together with the
“convolution-like sub-structure” created by averaging, to “eliminate” the n-dependence.
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Remark 9.2.7. The limitations of averaging—and the extent of resulting internal cancellation
(if any)—are unclear, due to the (currently) mysterious nature of the multi-parameter
families Ic,X,Y (n) and I

∨
c,X,Y (s) (with F,w dependence suppressed). Experimentation, whether

theoretical or computational, could be enlightening.

9.3 Problems inspired by the Ratios Conjectures

9.3.1 What is the optimal power saving?

We have not attempted to optimize the power saving XΩ(1) in Theorem 8.4.1(b), since there
could be a more efficient approach waiting to be understood. However, a sufficiently large
power saving might bring the Hasse principle for m = 5 within reach (perhaps under GLH
and [CFK+05]’s standard moment conjectures, applied to certain Artin L-functions).

From the opposite angle, it would also be very interesting to determine any hard limits
on what power savings can be expected, e.g. coming from Brauer–Manin obstructions for
m = 4 (but there the F∨(c) = 0 contribution could at least sometimes muddy the analysis).

Remark 9.3.1. When F is non-diagonal,m ≤ 5, or degF ≥ 4, even the F∨(c) = 0 contribution
itself deserves to be better understood (and it may be the most tractable starting point);
see the discussion in Remark 6.4.3, Example 6.5.3, [Wan21d, Remarks 1.19 and 5.1], and
Question 6.5.5. And when m = 4, even the c = 0 contribution deserves to be better
understood; see e.g. Remark 3.4.2.

Question 9.3.2 (Cf. Remark 6.1.5). When the Manin–Peyre prediction form = 4 differs from
the “Q-lines plus major arcs” heuristic of [Bro09, §8.3.3]—as is the case when F = x31+· · ·+x34
[Bro09, p. 149], for instance—where does the difference lie, precisely, in the delta method?

Besides V (x31+ · · ·+x34), another example for Question 9.3.2 is V (5x31+12x32+9x33+10x34)
(due to [CG66]), which in fact has a Brauer–Manin obstruction to rational points over Q.
The latter example is arguably cleaner, in that it has V (F∨)(Q) = ∅.

Proof that V (F∨)(Q) = ∅. Let m := 4, let F := (5, 12, 9, 10), let F :=
∑

i∈[m] Fix
3
i , and let

V := V (F )/Q. Fix c ∈ Qm \ {0} with F∨(c) = 0, i.e. F∨(c) = 0. Then by the classical
“factorization” of F∨(c) (see (6.1) in §6.3.2), we have

∑
i∈[m]±(c3i /Fi)1/2 = 0 for some choice

of signs. But c ̸= 0, so in particular, there must exist a nonempty set I ⊆ [m], and rationals
d, xi ∈ Q× for i ∈ I, such that (i) c3i /Fi = F 2

i x
6
i d

3 ∈ d · (Q×)2 for all i ∈ I, and (ii)∑
i∈I Fix

3
i = 0. But V (Q) = ∅, and (xi)i∈I ∈ QI \ {0}, so (ii) is impossible. Thus c cannot

exist.

In view of Remark 6.1.5, such an example naturally raises the following question:

Question 9.3.3. Given a smooth cubic surface V = V (F )/Q with V (AQ) ̸= ∅ and V (AQ)
Br =

∅ (in the notation of [Jah14, Definition IV.1.1 and Notation IV.2.5]), is it necessarily true
that V (F∨)(Q) = ∅, i.e. V ∨(Q) = ∅ (in the notation of §6.2)?
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9.3.2 Hooley’s critical ternary triumvirate

Note that

1 =
1

3
+

1

3
+

1

3
=

1

2
+

1

4
+

1

4
=

1

2
+

1

3
+

1

6
.

Let R4(a), R6(a) denote #{y,x ≥ 0 : y2 + x41 + x42 = a} and #{x, y, z ≥ 0 : x2 + y3 + z6 =
a}, respectively. [Hoo86a] made precise asymptotic ℓ2 conjectures for R4, R6 alongside
the analogous [Hoo86a, Conjecture 2] for r3. Hooley’s ternary problems belong to the
framework of a “cba conjecture” (with a goal—opposite the abc conjecture—of producing
points); cf. [Har17, Conjecture 1.11].

We focus on R4 (for technical reasons to arise later). Just like for r3, the first moment of
R4 grows linearly:

∑
a≤B R4(a) ∝ (B1/2)(B1/4)2(1+o(1)) = B(1+o(1)) as B →∞. But now,

ℓ2 is in some sense easier than for r3: for R4, the divisor bound easily implies the following
result.

Proposition 9.3.4. Unconditionally,
∑

a≤B R4(a)
2 ≪ϵ B

1+ϵ.

Remark 9.3.5. [Hoo79] proved
∑

a≤B R4(a)
2 ≪ϵ B(logB)4/π−1+ϵ by introducing and analyzing

“∆-functions” (i.e. certain divisor sums). [Rob11] improved [Hoo79]’s bound to (something a
bit stronger than) Oϵ(B(logB)ϵ); but O(B) seems to remain open.

Question 9.3.6. Can the bound Oϵ(B
1+ϵ) be improved to O(B) for R4 (or for R6)?

Observation 9.3.7. If #{(x,y) ∈ [0, X]4 × [X2/2, X2]2 : y21 + x41 + x42 = y22 + x43 + x44} ≪ X4,
then {a ∈ Z≥0 : R4(a) ̸= 0} has positive lower density.

Proof. Use double counting and Cauchy as for r3, but with the large variable “y” restricted
to [X2/2, X2].

For the question above (restricted to ∥y∥ ≍ X2 for simplicity), we now describe a possible
conditional approach whose roots lie close in spirit to work of Hooley (e.g. [Hoo81,Hoo84]).
Let F4(x) = F4(x1, . . . , x4) := x41 + x42 − x43 − x44. Let n := y1 + y2 and N := XdegF4/2 = X2.
Then

#{(x,y) ∈ [0, X]4 × [N/2, N ]2 : (y2 − y1)(y2 + y1) = F4(x)} ≤
∑

n∈[N,2N ]

∑
x∈[0,X]4

1n|F4(x).

By positivity, it is harmless to over-extend the right-hand side to a smooth sum

S4 :=
∑
n≥1

D(n/N)
∑
x∈Z4

1n|F4(x) · w(x/X)

with D ∈ C∞
c (R>0) and w ∈ C∞

c (R4). Given n, we then expand 1n|F4(x) over “vertices”
a mod n on the circle, using additive characters t 7→ en(at), to get

S4 =
∑
n≥1

D(n/N)n−1
∑
a∈Z/n

∑
x∈Z4

en(aF4(x)) · w(x/X).
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(One might call this the “polygon(s) method” for divisor-type problems; it is very close in
spirit to the circle method.) Now let S4,c(n) :=

∑
a∈Z/n

∑
z∈(Z/n)4 en(aF4(z) + c · z). Then

by Poisson summation, one can show that

S4 =
∑
n≥1

D(n/N)n−1
∑
c∈Z4

S4,c(n) · (X/n)4ŵ(Xc/n).

Conjecture 9.3.8. Automorphy and GRH for smooth hyperplane sections of the form
VP3(F4, c · x)Q (with c ∈ Z4 \ {0}) should recover a “B1+ϵ-like” bound, S4 ≪ϵ X

4+ϵ.

Remark 9.3.9. These hyperplane sections are essentially smooth plane quartic curves. In
general, a smooth projective curve over Q has the same Hasse–Weil L-function as its Jacobian
(an abelian variety of dimension equal to the genus of the curve). So the hypotheses above
concern the L-functions of certain abelian varieties of dimension 3.

Assuming the question of proving S4 ≪ X4 is indeed open—and not susceptible to
hypersurface slicing methods—the above approach is interesting in that one might be able to
remove the ϵ conditionally (in the fashion of Chapter 8).

9.3.3 On quartics

A “standard” application of the delta method, without cancellation over c, is (at least
morally) limited in scope to quadratic and cubic problems—at least as far as hypersurfaces
are concerned. It is amusing, but probably incorrect, to compare this situation to the
following classical fact: every Diophantine equation over Z (or Q) is equivalent to a system of
quadratic equations, and thus to a single quartic equation; an analogous statement holds for
homogeneous Diophantine equations over Z (or Q), by [Mum70, Theorem 1] (a result based
on Veronese embeddings).

In “natural” quartic and higher-degree equations, there should be more structure that
remains to be uncovered. For instance, [MV19] uses “averaging over a mod q” to get the best
known results on general quartic projective hypersurfaces, although it uses a “non-standard
modulus cutoff” in the delta method. Furthermore, Question 9.3.6 presents a “borderline
quartic” example where the “standard delta method” should provide a reasonable conditional
avenue forward. There is also some hope of using RMT-type predictions to analyze quartics
beyond [MV19], but any attempt at a fully rigorous conditional analysis might face serious
difficulties at the moment.

At the same time, it is very natural to wonder if there might be a better (more efficient)
way to “complete exponential sums” for quartics like F4. So it cannot hurt to list a few
half-baked thoughts, in the hope of inspiring further discussion or creativity:

(1) The tantalizing Question 9.3.6 may provide a good “critical” testing ground for old
and new quartic techniques alike.

(2) At least for smooth projective cubic hypersurfaces, one expects all “special subvarieties”
to be linear. But at least some smooth projective quartic hypersurfaces contain special
quadrics : see e.g. Example 6.5.4.
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The contrast between cubics and quartics seems vaguely parallel to the difference between
Szemerédi’s theorem for 3-term and 4-term arithmetic progressions—the former being
of a “linear” nature, and the latter of a “quadratic” nature. (But maybe “quadratic”
means something else here, in that the set of 4-term arithmetic progressions is cut out
by a system of 2 linear equations.)

(3) For homogeneous quartics, maybe L-functions associated to more complicated slices
(e.g. degree 2 hypersurfaces) should be relevant, not just (linear) hyperplane slices as in
the standard Kloosterman method for homogeneous equations?

(4) The standard Kloosterman method is based on interpolation—i.e. completing incomplete
sums—via Nyquist–Shannon sampling. (Given a weight w ∈ C∞

c (R), a modulus n≫ X,
and a residue z mod n, one replaces

∑
x≡z mod nw(x/X) with a “dual” sum of length

⪅ n/X—a certain linear combination of linear phases en(c · z).)
Is there a useful “nonlinear” version of Nyquist–Shannon sampling?

(5) One might try to replace “exact” sums with “approximate” sums. For example, in the
context of S4 (as defined after Question 9.3.6), one could write∑

x2≡z2 mod n

w(x/X) =
∑

y≡z2 mod n

1y=□ · w(y1/2/X) for any given z mod n,

and then try to detect 1y=□ “statistically” (in the spirit of the “square sieve”).

(6) Perhaps one could seek inspiration from quadratic Fourier analysis, or from formulas in
sphere packing that contain f(

√
n)’s, or from [Kum18, pp. 25–27, §2.2 Other versions

of the δ-method]’s discussion of Jutila’s and Munshi’s ideas, or from. . . .
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Appendix A

Modularity questions

In this appendix, we fix a Pm−1
Q -smooth cubic form F/Z in m ∈ {4, 6} variables, and consider

the Hasse–Weil L-functions L(s, Vc) appearing in Example 3.2.10. Fix c. (Here we restrict
attention to c ∈ Zm with Vc smooth of dimension m∗.)

A.1 A general discussion

Let us first recall some useful definitions and facts. Let ℓ be a prime, and K a field of
characteristic ̸= ℓ. Let X be a smooth, projective, geometrically integral variety over K. Let
PX/K denote the Picard variety of X (following [Poo17, §5.7.3], say), and AX/K the Albanese
variety of X (following [Poo17, Example 5.12.11], say). It is known that PX/K , AX/K are dual
abelian varieties over K [Poo17, Theorem 5.7.20].

Proposition A.1.1 (Standard). In this setting, we have a canonical isomorphism H1(XK ,Qℓ) ∼=
Vℓ(PX/K)(−1) ∼= Vℓ(AX/K)

∨ of ℓ-adic GK-representations.

Proof. To get the statement, one can combine, for instance, [Pet11, Remark] and [Bel13, par. 1].
(Alternatively, see [GL02, Proposition 9.6], which however assumes “for simplicity” that X has
a K-rational point.) The standard proof follows [Tom13, Piotr Achinger’s comment and Adel
Betina’s answer]. By ℓ-adic Kummer theory (cf. [Poo17, §7.6.3]) and [Poo17, Proposition 6.6.1],
one obtains isomorphisms H1(XK , (Z/ℓn)(1)) ∼= Pic(XK)[ℓ

n] for n ≥ 1, compatible with
multiplication by ℓ (as n varies). The result follows. (See [Poo17, §§7.5.3–7.5.4] for some
useful background on ℓ-adic cohomology, Tate modules, and Tate twists.)

We now return to the original setting of this appendix. If m = 4, then Vc is a genus
one curve, so L(s, Vc) is known to be the L-function of a weight 2 modular cusp form (since
L(s, Vc) = L(s, J(Vc)) by Proposition A.1.1 and [Poo17, Example 5.12.12], and elliptic curves
over Q are known to be modular).

Now suppose m = 6. Let Ac denote the Albanese variety of F (Vc)/Q, the Fano surface
of lines on Vc. If we consider the ℓ-adic GQ-representations Mc := H3(Vc × Q,Qℓ) and
Vℓ(Ac)

∨ = H1(Ac×Q,Qℓ) defining L(s, Vc), L(s, Ac), respectively, thenMc(1) ∼= H1(F (Vc)×
Q,Qℓ) ∼= Vℓ(Ac)

∨, by [Rei72, Appendix 4.3, Corollaries 4.29] (or [CP15, paragraph containing
diagram (5)]; cf. [DLR17, first paragraph of the proof of Theorem 4.1]) and Proposition A.1.1.
In particular, L(s, Vc) = L(s, Ac).
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Here dimAc = 5. But at least in general, abelian varieties A/Q of dimension 5 are not
yet known to be automorphic. (In this connection, the current state of the art is [BCGP21],
which “potentially addresses” abelian surfaces over certain fields like Q.)

However, one might ask if (at least) for certain F ’s, like x31 + · · · + x36, the Ac’s might
have some special structure that could “reduce” the complexity of L(s, Ac). In this vein,
recall that the Hasse–Weil L-function of a diagonal projective hypersurface over Q of degree
d ≥ 2 always factors into L-functions of degree ϕ(d) associated to certain Hecke characters
on Q(ζd); at least up to bad factors, this observation is due to Weil [Wei52].

Now let F := x31 + · · · + x36. Does some loose analog of Weil’s observation hold for
the “codimension-2 diagonal systems” Vc? In the most direct sense, the answer to this
basic question is probably negative in general (see Proposition A.2.1 below). So even when
F = x31 + · · ·+ x36, the conjectured automorphy of Vc (or Ac) does not seem to easily follow
from existing progress on the Langlands program; one may well need interesting new ideas in
order to probe the family c 7→ L(s, Vc) from an automorphic point of view.

A.2 Notes on an explicit diagonal system

Armed with the theory of abelian varieties,1 we can prove the following statement:

Proposition A.2.1. Let F := x31 + · · ·+ x36 and c := (1, 2, 3, 4, 5, 6). Then for each prime
ℓ and number field K/Q, the ℓ-adic GQ-representations Mc, Vℓ(Ac) are irreducible as ℓ-adic
GK-representations.

Remark A.2.2. Proposition A.2.1 does not rule out the possibility that L(s, Vc) could be
“deconstructed” in a subtler way, e.g. as the 9th symmetric power L-function of a GL2

representation.

Remark A.2.3. It may or may not be natural to contrast Proposition A.2.1 with [Pat97,
Theorem 3.1], a result showing that the “one-dimensional constituents of Sc(q)” (before
taking mixed 6th moments over a mod q) are “nice” over Q(ζ3) (and in fact, amenable to
statistical analysis via cubic metaplectic forms [Lou14]).

The conclusion of Proposition A.2.1 is equivalent to the statement that End(Ac×Q) = Z.
Thus Proposition A.2.1 naturally suggests the following conjecture:

Conjecture A.2.4. For almost all c ∈ Zm with F∨(c) ̸= 0, we have End(Ac ×Q) = Z.

Remark A.2.5. By [Mas96], the conjecture above should be equivalent to a question about
the generic fiber of the family Ac. Furthermore, a “typical” special fiber should control the
possible behavior at the generic fiber. But Proposition A.2.1 does not seem to imply the
conjecture “for free” (without further calculation).

Proof of Proposition A.2.1. For convenience, let A := Ac. Now fix ℓ. We know that Mc(1) ∼=
Vℓ(A)

∨ as ℓ-adic GQ-representations. So by Faltings’ isogeny and semi-simplicity theorems
(and the fact that endomorphism rings of abelian varieties are torsion-free as Z-modules),

1Thanks to Will Sawin for initial help in this direction.
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our desired irreducibility statement is equivalent to the statement that End(AK) = Z holds
for all K/Q.

We now prove the latter statement—which is independent of ℓ. To begin, we re-define
ℓ := 2 for convenience. By Appendix A.3.1, Vc has good reduction at all primes p ∈ [5, 100],
so by smooth proper base change, Mc is unramified at all p ∈ [5, 100]. Since Mc(1) ∼= Vℓ(A)

∨,
it follows that Vℓ(A) is unramified at all p ∈ [5, 100]. So by the Néron–Ogg–Shafarevich
criterion, A has good reduction at all p ∈ [5, 100].

For an abelian variety B over a field, let End0(B) := End(B)⊗ZQ; then End(B) is always
a subring of End0(B), finitely generated as a Z-module. In particular, to achieve our original
goal, it suffices to prove that End0(AK) = Q holds for all K/Q.

Now fix K/Q, and fix a Néron model AK/OK of AK . Then for each prime ℘ of OK , let
k℘ := OK/℘ and f℘ := [k℘ : Fp]. Finally, for each AK-good prime ℘, let A℘ := AK × k℘
denote the reduction of AK modulo ℘; let π℘ ∈ End(A℘) denote the “geometric Frobenius”
morphism A℘ → A℘ over k℘ (as in [Sta22, Tag 03SQ]); and if ℘ ∤ ℓ, let P℘ ∈ 1 + tZ[t]
denote the “reverse characteristic polynomial” of π℘. Then given ℘ | p ∈ [5, 100], we have

P℘(t) =
∏
(1 − βf℘i t), where PpZ(t) =

∏
(1 − βit), where for p ∈ {5, 7, 11, 13} we know by

Appendix A.3.1 that

(1) P5Z(t) = (5t2 + 1) · (625t8 + 100t6 + 4t2 + 1) at p = 5,

(2) P7Z(t) = (7t2 + t+ 1) · (7t2 + 4t+ 1)4 at p = 7,

(3) P11Z(t) = 161051t10+14641t9+3993t8+2420t7+539t6+14t5+49t4+20t3+3t2+ t+1
at p = 11, and

(4) P13Z(t) = (13t2 + 1) · (13t2 + 7t+ 1) · (13t2 + 4t+ 1)3 at p = 13.

In order to put the data above to use, note that for each AK-good prime ℘, the theory of
Néron models furnishes a canonical reduction map End(AK) → End(A℘), which is known
to be injective (see e.g. [Hui16]). On the other hand, for each AK-good ℘, the results
[Tat66, Theorems 1(a) and 2(a)] (combined with the fact, noted in [Tat66, p. 141, par. 2],
that over k℘, “isogeny-class factorizations” correspond to “simple E-algebra factorizations”)
imply that

End0(A℘) ∼= E℘,1 × · · · ,

where E℘,1, . . . are certain central simple algebras (CSA’s) over the number field factors
F℘,1, . . . of the commutative subalgebra Q[π℘] ⊆ End0(A℘), and where

F℘,j ∼= Q[T ]/(T 10P℘,j(1/T )) ∼= Q[t]/(P℘,j(t)) and [E℘,j : F℘,j] = m2
℘,j

correspond to an arbitrary factorization P℘(t) = P℘,1(t)
m℘,1 · · · of P℘(t) into irreducibles over

Q of the form 1 + tZ[t].
Finally, fix ℘ | 11 and ℘′ | 5. Then by Lemma A.2.7(1), P℘ is irreducible over Q. So

End0(A℘) = Q[π℘] ∼= F℘,1 ∼= L11. The algebra End0(AK) is thus isomorphic to a number field
F0 ⊆ L11. Now on the one hand, F0 ⊆ L11 automatically implies [F0 : Q] ∈ {1, 5, 10}, by
Lemma A.2.7(1). On the other hand, by Lemma A.2.7(2)–(3) (applying (2) if 2 ∤ f℘′ , and (3)
if 2 | f℘′), we must have End0(A℘′) ∼= E℘′,1 × E℘′,2, where each E℘′,j is a CSA of dimension
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m2
℘′,j ∈ {1, 4} over a number field F℘′,j of degree [F℘′,j : Q] ∈ {1, 2, 4, 8}. Now fix j ∈ [2],

and let F ′
j denote the image of the composition F0

∼= End0(AK)→ End0(A℘′)↠E℘′,j. Let
F℘′,j⟨F ′

j⟩ denote the F℘′,j-subalgebra of E℘′,j generated by F ′
j . Then certainly [F℘′,j⟨F ′

j⟩ :
F℘′,j ] ≤ [E℘′,j : F℘′,j ] = m2

℘′,j ≤ 4. But F℘′,j⟨F ′
j⟩ is an F ′

j-module, and hence a free F ′
j-module

(since F ′
j is a field). (In fact, F℘′,j⟨F ′

j⟩ is a commutative F ′
j-algebra, since F℘′,j is central in

E℘′,j .) Therefore, [F ′
j : Q] | [F℘′,j⟨F ′

j⟩ : Q] ⊥ 5. But the surjection F0↠F ′
j is nonzero, because

E℘′,j ≠ 0 (and all of our ring maps, including F0 → E℘′,j, are unital). Also, F0 is a field.
Therefore, F ′

j
∼= F0. It follows that [F

′
j : Q] = [F0 : Q], whence [F0 : Q] ∈ {1, 5, 10}∩Z×

5 = {1}.
So [End0(AK) : Q] = [F0 : Q] = 1, as desired.

Remark A.2.6. One could slightly shorten the proof, by replacing K with a suitable quadratic
extension K ′ (if necessary) to reduce to the case where there exists ℘ | 5 with 2 | f℘.

Let Q5(t) := P5Z(t) and Q11(t) := P11Z(t) be the specific polynomials at p ∈ {5, 11}
written above. We need the following lemma:

Lemma A.2.7. Given p ∈ {5, 11} and f ≥ 1, write Qp(t) =
∏
(1− βit), let

Qpf (t) :=
∏

(1− βfi t),

let Qpf ,1(t)
m(pf ,1) · · · denote a factorization of Qpf (t) into irreducibles over Q of the form

1 + tZ[t], and let
√
Qpf := Qpf ,1 · · · denote a “radical” of Qpf .

(1) The polynomial Q11(t) is irreducible, and the field L11 := Q[t]/Q11 contains exactly 1
nontrivial subfield L′

11. Here [L11 : Q] = 10 and [L′
11 : Q] = 5. Furthermore, for each

f ≥ 1, the polynomial Q11f (t) is irreducible, and Q[t]/Q11f
∼= L11.

(2) We can write Q5 = Q5,1Q5,2 with degQ5,1 = 2 and degQ5,2 = 8. Under these con-
ventions, the fields F5,j := Q[t]/Q5,j have degree degQ5,j. Furthermore, for each odd
f ≥ 1, we have Q5f =

√
Q5f and Q[t]/Q5f

∼= F5,1 × F5,2.

(3) We can write
√
Q52 = Q52,1Q52,2 with degQ52,1 = 1 and degQ52,2 = 4. Under these

conventions, the fields F52,j := Q[t]/Q52,j have degree degQ52,j. Furthermore, for each
even f ≥ 2, we have Q5f = (

√
Q5f )

2 and Q[t]/
√
Q5f
∼= F52,1 × F52,2.

Remark A.2.8. It is important to view L11, F5,2 as “abstract” (rather than “embedded”)
number fields, since they are not Galois (even though F5,1, F52,1, F52,2 happen to be Galois).

Before proceeding, note in general that Qq(t) | Qqf (t
f ), so the algebra map Q[t]→ Q[t]/Qq

given by t 7→ tf factors through a “canonical” map

ϕq,f : Q[t]/Qqf → Q[t]/Qq

between two 10-dimensional algebras. In general, ϕq,f need not be bijective (or equivalently,
injective or surjective), but it is always nonzero (because it sends 1 to 1). But we can still
analyze Qqf (t) reasonably well, using the Galois-theoretic correspondence between irreducible

polynomials over Q on the one hand, and GQ-orbits in Q on the other.
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Proof of (1). Fix f ≥ 1. Let ϕ := ϕ11,f . By Appendix A.3.1, we know that Q11 is irreducible,
i.e. L11 is a field. So GQ acts transitively on the roots of Q11 in Q, and hence also on the
roots of Q11f . Thus

√
Q11f is irreducible—i.e. Q[t]/Q11f is a local Artinian ring. Since ϕ ̸= 0,

it follows that Q[t]/Q11f
∼= L11 holds if and only if Q11f =

√
Q11f .

So to prove (1), it remains to show that Q11f (t) is square-free (and thus irreducible), and
compute the subfields of L11. (We can do these tasks in either order.)

For the first task, write Q11(t) =
∏
(1− βit) with β1, . . . , β10 ∈ Q; then we need to show

that βf1 , . . . , β
f
10 are pairwise distinct. Assume for contradiction that βfi = βfj for some distinct

i, j. Then βi/βj is a primitive nth root of unity for some n | f . In particular, ζn ∈ Q(βi, βj).
Since [L11 : Q] = 10, it follows that ϕ(n) = [Q(ζn) : Q] | 10d for some d ∈ {1, 2, . . . , 9}. But
in general, ϕ(n) ≥

√
n/2, so 90 ≥

√
n/2, whence n < 2 · 1002. By Appendix A.3.2, we

conclude that n ≤ 330. Hence by Appendix A.3.2, [Q(βni ) : Q] = 10, so the Galois conjugates
βn1 , . . . , β

n
10 must be pairwise distinct—contradicting the fact that (βi/βj)

n = 1.
For the second task, see Appendix A.3.2.

Proof of (2). By Appendix A.3.1, we can (and must) take Q5,1 := 5t2 + 1 and Q5,2 :=
625t8 + 100t6 + 4t2 + 1. (These are irreducible, i.e. F5,1 and F5,2 are fields.)

Now fix f ≥ 1 with 2 ∤ f . Let ϕ := ϕ5,f . For convenience, write Q5,1 =
∏

i≤2(1 − βit)
and Q5,2 =

∏
i≥3(1 − βit) with β1, . . . , β10 ∈ Q. Then let Q5,1,f :=

∏
i≤2(1 − βfi t) and

Q5,2,f :=
∏

i≥3(1− β
f
i t). For each j, Galois theory implies that

√
Q5,j,f is irreducible; cf. the

proof of (1). Furthermore, Q5,1,f is clearly square-free, since βf1 = −βf2 ̸= βf2 .
In fact, Q5,2,f is also square-free. Assume not; then arguing as in (1), we obtain distinct

i, j ≥ 3, and an integer n ≤ 330, such that n | f and (βi/βj)
n = 1. But here 2 ∤ f , so 2 ∤ n.

So by Appendix A.3.2, [Q(βni ) : Q] = 8, so the Galois conjugates βn3 , . . . , β
n
10 must be pairwise

distinct—a contradiction.
From the above information, we conclude that Q5,j,f is irreducible for each j. Since

degQ5,1,f ≠ degQ5,2,f , it then follows that the polynomial Q5f = Q5,1,fQ5,2,f is square-
free. Consequently, by the Chinese remainder theorem modulo Q5f , Q5, we can identify
ϕ with the product of the canonical maps ψj : Q[t]/Q5,j,f → Q[t]/Q5,j. But ψ1, ψ2 are
nonzero maps between fields—and thus isomorphisms. So ϕ is an isomorphism itself, whence
Q[t]/Q5f

∼= Q[t]/Q5
∼= F5,1 × F5,2, as desired.

Proof of (3). Following (2) and its proof, write Q5,1 =
∏

i≤2(1− βit) and Q5,2 =
∏

i≥3(1−
βit) with β1, . . . , β10 ∈ Q. The polynomials Q5,1, Q5,2 are even, so we may assume that
β1 + β2 = β3 + β4 = · · · = 0. Then in particular, Q52(t) = Q52,1(t)

2Q52,2(t)
2, where

Q52,1 :=
∏

2|i≤2(1 − β2
i t) = Q5,1(t

1/2) = 5t + 1 and Q52,2 :=
∏

2|i≥3(1 − β2
i t) = Q5,2(t

1/2) =

625t4 + 100t3 + 4t1 + 1. (Note that Q52,j(t
2) = Q5,j(t), and each Q5,j is irreducible, so each

Q52,j is certainly irreducible.)

Now fix f ≥ 1 with 2 | f . Let ϕ := ϕ52,f/2. Let Q52,1,f/2 :=
∏

2|i≤2(1 − βfi t) and

Q52,2,f/2 :=
∏

2|i≥3(1 − βfi t), and let Q5,1,f :=
∏

i≤2(1 − βfi t) = Q2
52,1,f/2 and Q5,2,f :=∏

i≥3(1 − β
f
i t) = Q2

52,2,f/2. For each j, Galois theory implies that
√
Q52,j,f/2 is irreducible;

cf. the proof of (1). Furthermore, Q52,1,f/2 is clearly square-free, since degQ52,1,f/2 = 1.
In fact, Q52,2,f/2 is also square-free. Assume not; then arguing as in (1), we obtain distinct

even indices i, j ≥ 3, and an integer n ≤ 330, such that n | f/2 and (β2
i /β

2
j )
n = 1. So
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by Appendix A.3.2, [Q((β2
i )
n) : Q] = 4, so the Galois conjugates (β2

4)
n, . . . , (β2

10)
n must be

pairwise distinct—a contradiction.
We conclude that Q52,1,f/2 and Q52,2,f/2 are irreducible. Since degQ52,1,f/2 ̸= degQ52,2,f/2,

it then follows that
√
Q5f = Q52,1,f/2Q52,2,f/2 and Q5f = (

√
Q5f )

2. By studying the “canon-
ical” maps ϕ′ : Q[t]/

√
Q5f → Q[t]/

√
Q52 and ψ′

j : Q[t]/Q52,j,f/2 → Q[t]/Q52,j, we obtain an
isomorphism Q[t]/

√
Q5f
∼= Q[t]/

√
Q52
∼= F52,1 × F52,2, as desired; cf. the proof of (2).

A.3 Supporting code

A.3.1 Local zeta polynomials

Running (in SageMath)

def Delta(c_1,c_2,c_3,c_4,c_5,c_6):

return Integer(expand(

3*prod(sqrt(c_1)^3 + i[0]*sqrt(c_2)^3 + i[1]*sqrt(c_3)^3

+ i[2]*sqrt(c_4)^3 + i[3]*sqrt(c_5)^3 + i[4]*sqrt(c_6)^3

for i in cartesian_product([[-1,1],[-1,1],

[-1,1],[-1,1],[-1,1]]))));

factor(Delta(1,2,3,4,5,6))

yields 3^13 * 996001 * 1898591 * 107541241 * 1722583559. So in particular, Vc in
Proposition A.2.1 has good reduction at all primes p ∈ [5, 100]. Now in [DLR17]’s sup-
plementary code [Laf16, algorithms.txt], re-define the function ZetaG as follows:

// Input: (c,q) with q an odd prime power,

// c[6] ne 0 in Fq, and V_c/Fq smooth of dimension 3

// Output: the characteristic polynomial P_1(F(V_c))

ZetaG := function(c,q)

Fq := FiniteField(q);

P4<[x]> := ProjectiveSpace(Fq,4);

X := Scheme(P4,c[6]^3*(&+[x[i]^3 : i in [1..5]])

- (&+[c[i]*x[i] : i in [1..5]])^3);

L := Scheme(P4,[x[2]+x[4], x[3]+x[5],

c[6]*x[1] - &+[c[i]*x[i] : i in [1..5]]]);

R<t> := PolynomialRing(Rationals());

n := [Mr(X,L,r) : r in [1..5]];

u := -&+[n[r]/r*t^r : r in [1..5]];

ll := Coefficients(R!&+[u^k/Factorial(k) : k in [0..5]])[1..6];

cf := ll cat [q^i*ll[6-i] : i in [1..5]];

return &+[cf[i]*t^(i-1) : i in [1..11]];

end function;

Then from the Magma session

> load "algorithms.txt";
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> ZetaG([1,2,3,4,5,6],5);

3125*t^10 + 1125*t^8 + 100*t^6 + 20*t^4 + 9*t^2 + 1

> ZetaG([1,2,3,4,5,6],7);

16807*t^10 + 40817*t^9 + 50421*t^8 + 40572*t^7 + 23478*t^6

+ 10182*t^5 + 3354*t^4 + 828*t^3 + 147*t^2 + 17*t + 1

> ZetaG([1,2,3,4,5,6],11);

161051*t^10 + 14641*t^9 + 3993*t^8 + 2420*t^7 + 539*t^6

+ 14*t^5 + 49*t^4 + 20*t^3 + 3*t^2 + t + 1

> ZetaG([1,2,3,4,5,6],13);

371293*t^10 + 542659*t^9 + 432809*t^8 + 234572*t^7 + 94718*t^6

+ 29666*t^5 + 7286*t^4 + 1388*t^3 + 197*t^2 + 19*t + 1

and the (SageMath) factorizations (over Z[t])

(1) (5*t^2 + 1) * (625*t^8 + 100*t^6 + 4*t^2 + 1) at p = 5,

(2) (7*t^2 + t + 1) * (7*t^2 + 4*t + 1)^4 at p = 7,

(3) irreducible at p = 11, and

(4) (13*t^2 + 1) * (13*t^2 + 7*t + 1) * (13*t^2 + 4*t + 1)^3 at p = 13,

we obtain the polynomials P5Z, P7Z, P11Z, P13Z as quoted in the proof of Proposition A.2.1.

A.3.2 Number field subfield computations

The SageMath code

max_tested = 0; max_discovered = 0

for n in range(1,2*100^2):

max_tested = n

for d in range(1,10):

if (10*d) % euler_phi(n) == 0:

max_discovered = n; break

print(max_tested,max_discovered)

yields 19999 330, showing that

max{n ∈ [1, 2 · 1002 − 1] : ∃ d ∈ {1, 2, . . . , 9} such that ϕ(n) | 10d} = 330.

We now study Q11. The SageMath code

max_tested = 0; R.<t> = QQ[]

Q_11 = ZetaG([1,2,3,4,5,6],11); K.<a> = NumberField(Q_11)

for n in range(1,500):

max_tested = n; L = K.subfield(a^n)[0]

if L.absolute_degree() != 10:

print(n)

print("Tested up to",max_tested)
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yields Tested up to 499, showing that for each positive integer n < 500, the field Q[t]/Q11

is generated by t
n
(i.e. t

n
is a primitive element for Q[t]/Q11). Meanwhile,

R.<t> = QQ[]; Q_11 = ZetaG([1,2,3,4,5,6],11)

K.<a> = NumberField(Q_11)

print(K.is_galois(),[Z[0].absolute_degree() for Z in K.subfields()])

yields False [1, 5, 10], showing that the field L11 := Q[t]/Q11 is non-Galois, with exactly
1 nontrivial subfield L′

11—and furthermore, [L′
11 : Q] = 5.

We now study Q5,2. The SageMath code

max_tested = 0; R.<t> = QQ[]

Q_52 = 625*t^8 + 100*t^6 + 4*t^2 + 1; K.<a> = NumberField(Q_52)

for n in range(1,500,2):

max_tested = n; L = K.subfield(a^n)[0]

if L.absolute_degree() != 8:

print(n)

print("Tested odds up to",max_tested)

yields Tested odds up to 499, showing that for each positive odd integer n < 500, the field
Q[t]/Q5,2 is generated by t

n
.

Finally, we study Q52,2. The SageMath code

max_tested = 0; R.<t> = QQ[]

Q_522 = 625*t^4 + 100*t^3 + 4*t^1 + 1; K.<a> = NumberField(Q_522)

for n in range(1,500):

max_tested = n; L = K.subfield(a^n)[0]

if L.absolute_degree() != 4:

print(n)

print("Tested up to",max_tested)

yields Tested up to 499, showing that for each positive integer n < 500, the field Q[t]/Q52,2

is generated by t
n
.
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Appendix B

Sharp cutoffs

Let F ∈ Z[x] = Z[x1, . . . , x6] be a P5
Q-smooth 6-variable cubic form. Recall, from Def-

inition 1.4.6, the singular series SF , the set C(SSV), and the real density σ∞,F,w :=
limϵ→0 (2ϵ)

−1
∫
|F (x)|≤ϵ dxw(x) for each w ∈ C∞

c (R6). Let C(T ) :=
⋃
L∈C(SSV) L ⊆ Q6. For

each w ∈ C∞
c (R6), let N ′

F,w(X) :=
∑

x∈Z6\C(T )w(x/X) · 1F (x)=0.

Let K be a compact semi-algebraic subset of R6. In analogy with N ′
F,w(X), let

N ′
F,K(X) := #{x ∈ (Z6 ∩XK) \ C(T ) : F (x) = 0}.

For δ > 0 and a ∈ R6, let Bδ(a) denote the closed Euclidean ball of radius δ centered at a.
Now—and this is a subtle point if K is not “sufficiently transverse” to {x ∈ R6 : F (x) =
0} = C(V )(R)—let Kδ :=

⋃
a∈K Bδ(a), and define σ∞,F,K to be the iterated limit

lim
δ→0

(
lim
ϵ→0

(2ϵ)−1 vol{x ∈ Kδ : |F (x)| ≤ ϵ}
)
.

I believe that σ∞,F,K should exist and be finite, and that the following statement should hold,
but have not checked carefully.

Conjecture B.0.1. Fix η > 0. Suppose limX→∞(N ′
F,w(X)/X3) = σ∞,F,wSF holds for all

w ∈ C∞
c (R6) with Suppw ⊆ Kη. Then limX→∞(N ′

F,K(X)/X3) = σ∞,F,KSF .

Plausible proof sketch. For simplicity, assume 0 /∈ K. (I believe the case 0 ∈ K should follow
from the case 0 /∈ K without too much trouble.)

To prove lim supX→∞(N ′
F,K(X)/X3) ≤ σ∞,F,KSF , take decreasing opens Ui → K and use

the hypothesis for suitable weights wi ∈ C∞
c (R6) that are 1 on K and 0 outside Ui; I expect

that limi→∞ σ∞,F,wi
= σ∞,F,K .

To finish, it should suffice to bound the “error” (N ′
F,wi

(X)−N ′
F,K(X))/X3 by oi→∞(1) as

X →∞. To do so, take ϵi → 0 and use weights w′
i that are 1 on Ui ∩ (C(V )(R) \K) and 0

outside an ϵi-neighborhood thereof. Then

0 ≤ N ′
F,wi

(X)−N ′
F,K(X) ≤ N ′

F,w′
i
(X).

I expect that (since C(V ) is smooth away from 0, and K is semi-algebraic) the boundary of
C(V )(R) \K in C(V )(R) is relatively null (for any reasonable measure on C(V )(R)), and
that consequently σ∞,F,w′

i
= oi→∞(1).
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Remark B.0.2. When choosing a region K, we must avoid the situation K = Q6∩ [−1, 1]6, and
possibly also (though I have not checked carefully) the situation where {x ∈ K : F (x) = 0} is
like a fat Cantor set, say. So some restriction on K (like the present “compact semi-algebraic”
assumption) is necessary or at least convenient.

Remark B.0.3. If correct, the ideas in this appendix should apply much more generally to
most Manin-type settings. But of course, the hard part is still counting with any reasonable
weight at all! I just wanted to record some thoughts and subtleties that I have not seen
thoroughly discussed elsewhere.
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