
WHEN DOES DENSITY BEAT HUA?

VICTOR WANG

Abstract. Two technical ingredients, together with a multiscale analysis, suffice to fully
(or almost) recover [HB98] if Hypothesis HW is replaced with a natural Density Hypothesis
HW-l for a function l : [1/2, 1]→ R equal to (resp. not too far from) l(σ) = 2(1− σ).

The first technical ingredient, Lemma 3.4, refines [Hoo86]’s complex analysis so that
assuming only a zero-free region [σ, 1]× [−T, T ] of height T = Qε, our weighted exponential
sums (over good moduli q ≤ Q) exhibit nontrivial cancellation of order Q1−σ. For technical
reasons when applying Lemma 3.4 in the t < n case, we find it convenient (possibly necessary)
to use a smooth dyadic weight on top of the given delta method weights Iq(c).

The second, Lemma 5.4, bounds the contribution of bad moduli q over c’s for which σc
is above a threshold σ∗. Over full boxes [Hoo86, HB98] exploit average behavior of certain
arithmetic functions, which we extend to a worst-case estimate over arbitrary subsets.
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2 VICTOR WANG

1. Defining the relevant cubic hypersurfaces and exponential sums

Fix n ∈ {4, 6}. For convenience, let F (x) denote the cubic form x3
1 + · · · + x3

n—though
everything we do can be generalized, in the manner of [HB98], to arbitrary diagonal cubic
forms in n variables with integer coefficients. Set S(q, a, b) :=

∑
x∈Z/q eq(ax

3 + bx) and

Sq(c) :=
∑

a∈(Z/q)×

∏
1≤i≤n

S(q, a, ci)

for c ∈ Zn. For convenience, ‖c‖ will refer to ‖c‖∞ everywhere below.

Definition 1.1. Let V and V(c) denote the proper schemes defined by the equations F (x) = 0
and F (x) = c · x = 0, respectively; for a prime power q, let ρ(q) and ρ(c; q) and be the
Fq-point counts. Finally, define the usual “errors” (comparison to projective spaces of the
same dimensions), E(q) := ρ(q)− (qn−1−1)/(q−1) and E(c; q) := ρ(c; q)− (qn−2−1)/(q−1).

Normalize to get Ẽ(c; q) := q−(n−3)/2E(c; q) and Ẽ(q) := q−(n−2)/2E(q).

Observe that V(c) is singular at a Fp-point x if and only if c and ∇F (x) are linearly
dependent; such x exists if and only if p divides the well-defined integer

∆(c) := 3
∏

(c
3/2
1 ± c3/2

2 ± · · · ± c3/2
n ).

(For a general diagonal cubic or a general cubic, it may be harder to write down an explicit if
and only if statement; but we only need “only if”.)

Proposition 1.2 ([Hoo86, p. 69, (47)]). Sp(c) = p2E(c; p)− pE(p) for primes p - ∆(c).

Proof. This is pretty simple, and it only uses that p - c. The key is that F is homogeneous,
so Sp(c) is invariant under scaling of c. �

In particular, if S̃q(c) := q−(n+1)/2Sq(c), then S̃p(c) = Ẽ(c; p)− p−1/2Ẽ(p). Here Ẽ(p)� 1
(Weil’s diagonal hypersurface bound) will be essentially negligible for our purposes.

Proposition 1.3 ([Hoo86, pp. 65–66, Lemma 7]). If p - ∆(c), then Spl(c) = 0 for l ≥ 2.

Proof. The same scalar symmetry argument (but without projectivizing) gives

φ(pl)Spl(c) =
∑

x∈(Z/pl)n
[−pl−1 · 1pl−1|c·x + pl · 1pl|c·x][−pl−1 · 1pl−1|F (x) + pl · 1pl|F (x)].

So Spl(c) = 0 is equivalent to statements about point counts, which are proven by Hensel
lifting. The lifting calculus follows dimension predictions, precisely because p - ∆(c). �

2. Defining the relevant Dirichlet series and L-functions

Suppose ∆(c) 6= 0. At least at good primes p - ∆(c), define the local L-function

Lp(c; s) := exp

(
(−1)n−3

∑
r≥1

Ẽ(c; pr)
(p−s)r

r

)
=

∏
1≤j≤dimn

(1− λ̃j,pp−s)−1.

(The equality comes from the Grothendieck–Lefschetz fixed-point theorem, applied to the
smooth projective hypersurface V(c)Fp .) Here the appropriate (primitive if dimV(c)Fp =
dimV(c)C = n− 3 is even) `-adic and Betti cohomology groups have dimension

dimn := dimHn−3
prim(V(c)C) =

(d− 1)(n−3)+2 + (−1)n−3(d− 1)

d
=

2n−1 + 2(−1)n−3

3



WHEN DOES DENSITY BEAT HUA? 3

and |λ̃j,p| = 1 (Deligne). In particular, Ẽ(c; p) = (−1)n−3
∑

j λ̃j,p � 1.

To compare Sq(−) (a p-adic or Z/pl notion) and E(−; q) (an Fp or Fpr notion), consider
(following [Hoo86], but with analytic rather than algebraic normalization) the Dirichlet series

Ψ(c; s) :=
∑
q≥1

q⊥∆(c)

S̃q(c)

qs
=
∏
p-∆(c)

(
1 +

S̃p(c)

ps

)
,

the Euler product being valid for σ > 1. Furthermore, if σ > 0, then

1 +
S̃p(c)

ps
= 1 +

1

ps
(−1)n−3

∑
j

λ̃j,p +O

(
1

pσ+1/2

)
Lp(c; s)(−1)n−3

= 1 +
1

ps
(−1)n−3

∑
j

λ̃j,p +O

(
1

p2σ − 1

)
.

(The p2σ − 1 appears from a geometric series when n− 3 is even; it can be replaced by p2σ

when n− 3 is odd, or for all n if we restrict to σ ≥ 1/2, say.)

Definition 2.1. Define L∗(c; s) :=
∏

p-∆(c) Lp(c; s), so Θ := Ψ/(L∗)(−1)n−3
is regular and

bounded for σ ≥ σ0 > 1/2 [Hoo86, p. 71, (55)]. Following Serre 1970 (or maybe Taylor 2004
for a modern reference?), define the bad local factors, Λ(c; s), for V(c), to get L := L∗Λ; and
to complete L at the infinite place, set

ξ(c; s− (n− 3)/2) := Γc(s)B(c)s/2L(c; s− (n− 3)/2),

with gamma factor (Taylor 2004 uses Hodge–Tate weights, which may be equivalent?)

• Γc(s) := ΓC(s− 0)h
0,1

= (2π)−sΓ(s) for n = 4;

• Γc(s) := ΓR(s− 1)h
1,1
+ ΓR(s− 1 + 1)h

1,1
− ΓC(s− 0)h

0,2
for n = 5; and

• Γc(s) := ΓC(s− 1)h
1,2

= (2π)−5sΓ(s− 1)5 for n = 6.

Here ΓR(s) := π−s/2Γ(s/2) while ΓC(s) := (2π)−sΓ(s), and in each case the conductor
B(c) =

∏
p|∆(c) p

ap is bounded in terms of c.

The (conjectured) functional equation takes the form ξ(c; s) = ±ξ(c; 1− s), or equivalently

L(c; s) = ±Γc(s+ (n− 3)/2)−1B(c)−s/2−(n−3)/4Γc((n− 1)/2− s)B(c)(n−1)/4−s/2L(c; 1− s)
= ±Γc(s+ (n− 3)/2)−1Γc((n− 1)/2− s)B(c)1/2−sL(c; 1− s).

3. Reworking Hooley’s complex analysis, in view of density applications

Our Hasse–Weil L-functions L(c; s) are indexed by nonzero tuples c ∈ Zn with ∆(c) 6= 0.
Under our analytic normalization, they share the critical strip 0 ≤ <(s) ≤ 1. For convenience
in what follows, we define the rectangles Rσ,T := [σ, 1]× [−T, T ].

3.1. Controlling decay in zero-free regions.

Proposition 3.1 (Cf. [Hoo86, pp. 73–74]). Fix σ0 ∈ [1/2, 1] and T ≥ 1, and suppose Rσ0,T

is a zero-free region of L(c; s). If 0 < η � 1, then

L(c; s)±1 �η ‖c‖η(|t|+ 2)η

for all s ∈ [σ0 + η,∞)× [−T/2, T/2], as long as T &η 1.
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Proof. We do the proof assuming ξ is entire. First, |L(c; s)| ≤ ζ(σ)dimn for σ > 1 (i.e. to the
right of the critical strip), so certainly L(c; s) � 1 for σ ≥ 1.5. Hence L(c;−0.5 + it) �n

B(c)(|t| + 2)dimn by L’s functional equation and the gamma ratio bound Γc(n/2 − 2 ±
it)−1Γc(n/2± it)�n (|t|+ 2)dimn coming from Stirling’s formula [IK04, p. 151, (5.113)] (or
from Γ’s functional equation). By the finite order HW assumption (i.e. that ξ(c; s)� exp(|s|c)
for some real number c = c(c)), the Phragmén–Lindelöf principle1 gives

|L(c; s)| . B(c)(|t|+ 2)dimn

for σ ∈ [−0.5, 1.5] and hence for σ ≥ 1. We would like to get a similar lower bound, and also
to the improve the exponent on ‖c‖ and |t|+ 2 to arbitrarily small η > 0.

By the zero-free hypothesis, f(s) := logL(c; s) is regular in [σ0,∞)× [−T, T ] (a simply
connected region). By the previous paragraph,

<f(s) = log|L(c; s)| . log(‖c‖(|t|+ 2))

for s ∈ [σ0,∞)× [−T, T ]. Now, as long as T & 1, the Borel–Carathéodory theorem gives us
a matching .η-bound on the absolute value, at least for s ∈ [σ0 + η, 1.5]× [−T/2, T/2]:

|f(s)| . η−1 log(‖c‖(|t|+ 2)).

(The implied constant can easily be made independent of σ0, η.) The bound also holds
unconditionally for σ ≥ 1.5, where |logL(c; s)| ≤ (dimn) · ζ(σ)� 1.

Now suppose T &η 1 (with threshold to be determined), and fix s ∈ [σ0 + 2η, 1 + η] ×
[−T/2, T/2]. Consider the three circles with center σ′ + it and radii r1 < r2 < r3 given by

σ′ − σ0 − η − 1 < σ′ − σ < σ′ − σ0 − η.
We can choose r3 �η 1 so that σ′ = r3 + (σ0 + η) ≤ r3 + 2�η 1 and

λ := log(r2/r1)/ log(r3/r1) ≤ 1− η2.

Indeed, r1 = r3−1 and r2 ≤ r3−η, and limr3→∞ log((r3−η)/(r3−1))/ log(r3/(r3−1)) = 1−η,
so there exists r3, depending only on η, such that λ ≤ 1 − η2 is guaranteed. As long as
T ≥ 2σ′, the circles will lie in [σ0,∞) × [−T, T ], so Hadamard’s three-circles theorem

improves the bound on |f | to sub-logarithmic: |f | �η log(‖c‖(|t|+ 2))1−η2 . In particular, |f |
is logarithmically bounded with arbitrarily small constant, so

|log|L(c; s)|| = |<(f)| ≤ |f | ≤ η log(‖c‖(|t|+ 2))

as long as ‖c‖(|t|+ 2) &η 1 is sufficiently large. Exponentiating, and absorbing the bound
|f(s)| . η−1 log(‖c‖(|t|+ 2)) when ‖c‖(|t|+ 2) .η 1, we get (uniformly in c, t) that

‖c‖−η(|t|+ 2)−η .η |L(c; s)| .η ‖c‖η(|t|+ 2)η

for all s ∈ [σ0 + 2η, 1 + η]× [−T/2, T/2]. To extend to σ ≥ 1 + η, recall that |logL(c; s)| ≤
(dimn) · ζ(σ) for σ > 1. Finally, redefining 2η to η gives the desired result. �

Remark 3.2. In fact, the Borel–Carathéodory bound |log|L(c; s)|| . η−1 log(‖c‖(|t| + 2))
would suffice for us in the T -aspect (we will be taking T = Qε), but not in the c-aspect.

1dividing L(c; s) by B(c)sdimn exp(ε(eiγs + e−iγs)) for fixed ε > 0, where γ is a small angle so that σγ is
bounded away from the imaginary axis π/2 (mod π), so eiγs + e−iγs strictly dominates |s|c as t→ ±∞; and
then applying maximum modulus principle and setting ε→ 0

https://en.wikipedia.org/wiki/Phragm%C3%A9n%E2%80%93Lindel%C3%B6f_principle
https://en.wikipedia.org/wiki/Borel%E2%80%93Carath%C3%A9odory_theorem
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3.2. Contour argument: a smoothed black box for eliminating the height cost.
We first recall how to extract Dirichlet coefficients with a smooth weight f .

Proposition 3.3 (Truncated Mellin inversion). For f a smooth function compactly supported
on the positive real axis R>0, and q ∈ R>0 and c ∈ R arbitrary, we have

f(q) =
1

2πi

∫ c+i∞

c−i∞

ds

qs
f̂(s),

where f̂(s) :=
∫∞

0
f(x)xs−1dx. Furthermore, if c ∈ [σ0, σ0 + A] for some σ0 ∈ R, and f(x)

vanishes for x� Q, then truncating the integral at c± iT leaves an error of

Ok,A

(
Qc−σ0

qcT k−1

∫ ∞
0

|f (k)(x)|xk−1+σ0dx

)
for any positive integer k ≥ 2.

Proof. For the first part, use Fourier inversion upon the change of variables s = c+ 2πit and
x = qeu. Now, to (naively!) estimate the error from truncation at c± iT assuming c ≥ σ0

and c− σ0 ≤ A (so xc−σ0 �A Q
c−σ0 for x in the support of f), we integrate by parts to get

f̂(s) =

∫ ∞
0

f (k)(x)
xs+k−1

s(s+ 1) · · · (s+ k − 1)
dx�k,A

Qc−σ0

|t|k

∫ ∞
0

|f (k)(x)|xk−1+σ0dx.

(Here we use |s|, . . . , |s+ k − 1| ≥ |t|.) This pointwise estimate is enough to get a final error
bound of ∫ c±i∞

c±iT

f̂(s)

qs
ds�k,A

Qc−σ0

qcT k−1

∫ ∞
0

|f (k)(x)|xk−1+σ0dx,

since |t|−k is integrable for k ≥ 2. �

Recall Ψ(c; s) :=
∑′

q≥1 q
−sS̃q(c) (with Dirichlet coefficients S̃q(c)�ε q

ε), where ′ denotes

restriction to moduli q with q ⊥ ∆(c). (Here c is fixed with ∆(c) 6= 0.)

Lemma 3.4 (Cf. [Hoo86, p. 75, Lemma 10]). Fix σ0 ∈ (1/2, 1) and T ≥ 1, and suppose
Rσ0,T is a zero-free region of L(c; s). Fix η > 0 and c > 1. If k ≥ 2 is a positive integer, and
f(q) is a smooth function compactly supported on R>0 and vanishing for q � Q, then∑′

q≥1

S̃q(c)f(q)�k,η,c ‖c‖η|T + 2|η
(
Qη +

Qc−σ0

T k−1

)∫ ∞
0

|f (k)(x)|xk−1+σ0dx

as long as T &η 1 and c ≥ 1 + η.
(As written, this is only valid since n ∈ {4, 6} is even, and since a GRC-type bound is

known when n ∈ {4, 6}. The case 2 - n requires additional serious assumptions—even ignoring
GRC-type questions—as we will discuss after the proof of Lemma 3.4.)

Remark 3.5. With more care in the truncation in Proposition 3.3, one may be able to replace
T k−1 with T k and allow all k ≥ 1. [Hoo86]’s result is an unsmoothed estimate for k = 1,
which [Hoo86, HB98] apply via Abel summation (summation by parts) with first order finite
differences, ∆1f(q). A result similar to the one above could likely be obtained by using kth
order summation by parts with ∆kf(q), along with identities (valid for c > 1) similar to∑′

1≤q≤Q

S̃q(c)
(Q− q)k−1

(k − 1)!
=

1

2πi

∫ c+i∞

c−i∞
Ψ(s)

Qs+k−1

s(s+ 1) · · · (s+ k − 1)
ds.

https://en.wikipedia.org/wiki/Mellin_inversion_theorem
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Proof. Recall that Ψ = Θ(L∗)(−1)n−3
= ΘL(−1)n−3

/Λ(−1)n−3
. We assume c > 1, so absolute

convergence of the series for Ψ (for <(s) > 1), Proposition 3.3, and Fubini together yield∑′

q≥1

S̃q(c)f(q) =
1

2πi

∫ c+iT/2

c−iT/2
f̂(s)ds

Θ(c; s)Λ(c; s)±1

L(c; s)±1

+
∑′

q≥1

|S̃q(c)|
qc

Ok,c

(
Qc−σ0

(T/2)k−1

∫ ∞
0

|f (k)(x)|xk−1+σ0dx

)
.

Since |S̃q(c)| �η q
η/2 for q ⊥ ∆(c), the error term is satisfactory if c ≥ 1 + η (the infinite

series then converges to Oη(1)).
As for the main term, we can shift the contour to the real line c0 = σ0 + η. Note that

c0 < 1 + η ≤ c, and there are no residues within (or along) the contour:

[c0,∞)× [−T/2, T/2]

is a zero-free region of L(c; s), and f̂(s) is entire. We will use the following estimates:

• For <(s) ∈ [σ0, c], integration by parts gives the pointwise estimate

f̂(s) =

∫ ∞
0

f (k)(x)
xs+k−1

s(s+ 1) . . . (s+ k − 1)
dx�k,c

Q<(s−σ0)

|s|k

∫ ∞
0

|f (k)(x)|xk−1+σ0dx.

• For s ∈ [c0,∞)× [−T/2, T/2], Proposition 3.1 implies 1/L(c; s)±1 � ‖c‖η|T + 2|η, as
long as T &η 1.
• For <(s) ≥ c0, the factor Θ(c; s)� ζ(σ0+1/2+η)� ζ(1+η) is bounded independently

of c (see [Hoo86, p. 71, (55)]; here c0 = σ0 + η ≥ 1/2 + η).
• For <(s) ≥ c0, the product of bad factors, Λ(c; s)±1 �η ‖c‖η, is bounded indepen-

dently of T , since according to [Hoo86, p. 72], for p | ∆(c) one has

Lp(c; s) =
∏

1≤j≤dimn

(1− λj,pp−(n−3)/2p−s)−1

with |λj,p| ≤ p(n−3)/2, so that c0 ≥ 1/2 and p ≥ 2 implies |1 − λj,pp
−(n−3)/2p−s| ∈

[1− 2−1/2, 1 + 2−1/2], and for A := max((1− 2−1/2)−1, 1 + 2−1/2) we have

|Λ(c; s)|±1 ≤
∏
p|∆(c)

Adimn = Aω(∆(c))·dimn .η ‖c‖η.

Finally, combining the above with the triangle inequality, we bound the main term by

‖c‖η|T + 2|η · ζ(1 + η) · ‖c‖η · max
x∈R>0

∫ ∞
0

|f (k)(x)|xk−1+σ0dx

times the integral of Q<(s−σ0)|s|−k along the top, bottom, and left sides of the rectangular
contour. The top and bottom sides contribute a factor of∫

|ds|Q<(s−σ0)|s|−k ≤ (c− c0)Qmax(c0,c)−σ0(T/2)−k .c Q
c−σ0(T/2)−k.

The left side contributes a factor of∫
|ds|Q<(s−σ0)|s|−k ≤ Qη

∫ c0+iT/2

c0−iT/2
|ds|max(c0, |t|)−k � Qη[c1−k

0 + c1−k
0 log(T/2c0)].
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(Of course, the log(T/2c0) is only needed when k = 1 and T/2 ≥ c0.) Since c0 ≥ 1/2, the
term c1−k

0 is bounded by 2k−1, which fits in the implied constant; and the term log(T/2c0) is
bounded by log T , which can be absorbed by |T + 2|η. �

Remark 3.6. For contour shifting when n − 3 is even, we want to avoid poles of L (is it
necessarily ruled out at s = 1, say?) and zeros of Λ (should be none). If n− 3 is odd (as in
[Hoo86, HB98]), we want to avoid zeros of L and poles of Λ (none assuming |λj,p| ≤ p(n−3)/2

at bad places, since c0 > 0; in fact we also use an upper bound for Λ for c0 ≥ 1/2).
In this connection, there may (unfortunately) be poles of L in the n = 5 case, say, because

the 6-dimensional Artin representation may be reducible with trivial components, in which
case there is a residue from zeta. And maybe we should expect this to occur sometimes (e.g.
if there is a rational line?) if we are really getting (geometrically) almost all cubic surfaces as
hyperplane sections. But how often? (Probably at most a thin subset, but that could be
annoying.) Or perhaps this is not actually an issue for generic 5-variable cubics, but in any
case there is more work to be done here.

Remark 3.7. For the zero-dimensional Dirichlet L-functions L(s, χ) (with χ a non-principal
character modulo q) it is known that L(s, χ) =

∑
n≤N χ(n)n−s +O(qN−σ) as long as σ ≥ 1/2

(say), N ≥ 2q, and |t| ≤ N/q; in particular, this holds for t = 0. (See e.g. Bombieri, On the
large sieve, Lemma 7.) Could there be an analog for Ψ(s) in our case?

4. Archimedean estimates for weighted Airy-like integrals

In order to apply Lemma 3.4, we will need integral estimates proven in Lemma 4.9 below.

Remark 4.1. We assume [HB96]’s notation w ∈ C (S), and his reduction to the more restrictive
class of counting weights w ∈ C0(S), as described in [HB96, Section 6]. Recall that one
requirement for w ∈ C (S) is that ‖∇F‖ is bounded away from 0 on suppw, while w ∈ C0(S)
must have a specified coordinate realizing the bound. For our purposes, S can be held
constant, so we will often suppress the S-dependence in our bounds.

Recall Q := P d/2 (here d = 3). As explained in [HB96, Section 7], we have

Iq(c) = P n

∫
Rn
w(x)h(Q−1q, F (x))eq(−Pc · x)dx,

and for r := q/Q and v := Pc/Q we get Iq(c) = P nr−1J∗r (v) where

J∗r (v) :=

∫
Rn
w(x)[r · h(r, F (x))]er(−v · x)dx.

Remark 4.2. Our normalization J∗r (v) differs from [HB96]’s I∗r (v) = r−1J∗r (v). Also, where
[HB96] writes G(x) we write F (x) instead; we will avoid using the letter G since G := F (x)
in [HB96] (for F homogeneous), while G := ∆(c) in [HB98].

The point of our normalization is that by [HB96, Lemma 5], r · h(r, x) lies in the class H∞,
defined as follows. (Observe that ∂jx∂

k
r [r · h] = r · [∂jx∂krh] + k · [∂jx∂k−1

r h].)

Definition 4.3 (Cf. [HB96, p. 181]). A smooth function f : R>0 × R→ C lies in H∞ if

|∂jx∂kr f(r, x)| �f,j,k,N r−j−k min[1, (r/|x|)N ]

for all j,N ≥ 1 and k ≥ 0, while

|∂kr f(r, x)| �f,k,N r−k(rN + min[1, (r/|x|)N ]).
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For certain sets of parameters T appearing below, we will let H∞(T ) denote a subset of H∞,
chosen once and for all, such that the implied constants above are uniform in f with respect
to T (i.e. such that �f can be replaced with �T ). In particular, we choose H∞(S), once
and for all, to contain r · h(r, x).

Remark 4.4. The class H used by [HB96] only specifies the above conditions when k = 0
(i.e. no r-derivatives are taken); however it seems clearer below to explicitly refer to H∞. In
any case, we may think of f ∈H∞ as functions “bounded by dimensional analysis”.

Remark 4.5. If f ∈H∞(T ), then r · ∂rf ∈H∞ uniformly in f (with respect to T ), since

∂jx∂
k
r [r · ∂rf ] = r · [∂jx∂k+1

r f ] + k · [∂jx∂kr f ].

Less obviously, x · ∂xf ∈H∞ (again, uniformly with respect to T ) since

∂jx∂
k
r [x · ∂xf ] = x · [∂j+1

x ∂kr f ] + j · [∂jx∂kr f ],

where j + 1 ≥ 1 and |x| · r−1 min[1, (r/|x|)N ] is ≤ 1 if |x| ≤ r and ≤ (r/|x|)N−1 if r ≤ |x|.

We now generalize (the proof of) [HB96, p. 181, Lemma 14] as follows.

Lemma 4.6 (q-derivative recursion). Assume w ∈ C0(S) and j ∈ Z. Then for k ≥ 0, the
kth derivative ∂kr [r−jJ∗r (v)] is the sum of 4k terms of the form r−j−kJ(r;v), where

J(r;v) =

∫
Rn
w1(x)g(r, F (x))er(−v · x)dx

with w1 ∈ C0(S, j, k) supported on supp(w) and g ∈ H∞(S, j, k), for 4k choices of (w1, g)
depending only on j, k, w(x) and the absolute constants h(x, y), n, d.

Proof. Fix w ∈ C0(S) and f ∈H∞(S). Given j ∈ Z, the product rule gives

rj+1∂r[r
−jf(r, F (x))]er(−v · x) = rj+1∂r[r

−jf(r, F (x))]er(−v · x)

+ rj+1[r−jf(r, F (x))]er(−v · x)(2πiv · x/r2).

Clearly rj+1∂r[r
−jf(r, x)] = −j · f(r, x) + r · ∂rf(r, x) lies in H∞. Thus

rj+1∂r

[
r−j
∫
Rn
w(x)f(r, F (x))er(−v · x)dx

]
is the sum of one term of the form J(r;v) (with w1 := w and g := −j · f + r · ∂rf) and∫

Rn
w(x)f(r, F (x))er(−v · x)(2πiv · x/r)dx.

But er(−v · x)(2πiv · x/r) is precisely the directional derivative −x · ∇ of er(−v · x), so
integration by parts (and compactness of suppw) equates the second integral with∫

Rn
er(−v · x) · div[w(x)f(r, F (x))x]dx,

where div[w(x)f(r, F (x))x] is

= w(x)f(r, F (x)) · n+ [x · ∇w(x)]f(r, F (x)) + w(x)fx(r, F (x))[x · ∇F (x)].

By Euler’s homogeneous function theorem, x · ∇F (x) = d · F (x). So the second integral
breaks up into three terms of the form J(r;v), with (w1, g) := (w, nf), (x · ∇w, f), (w, dxfx).
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All in all, induction gives the desired 4k-term expansion of the kth r-derivative, with
enough uniformity so that w1 ∈ C0(S, j, k) and g ∈ H∞(S, j, k) for suitable definitions of
C0(S, j, k) and H∞(S, j, k) (chosen once and for all). �

If u := v/r = Pc/q, then what [HB96, HB98] call I(r;u) matches our J(r;v). In
particular, the bounds [HB98, Section 3, (3.6) and (3.8)] apply: J(r;v) �j,k,N ‖v‖−N
and J(r;v)�j,k,ε P

εr‖u‖
∏n

i=1 min[|ui|−1/2, ‖u‖−1/4]. Strictly speaking, the latter estimate
assumes q � 1; for clarity, we state a more general bound valid for all reals q > 0.

Lemma 4.7 (Cf. [HB96, p. 188, Lemma 22]). If r > 0 and u 6= 0, then

J(r;v)�j,k,ε max(1, r−1)εr‖u‖
n∏
i=1

min[|ui|−1/2, ‖u‖−1/4].

Proof. If ‖u‖ ≥ cr−2 (for c ∈ (0, 1) specified later), then [HB96, p. 184, Lemma 18] gives

J(r;v)�j,k (r‖u‖)1−n �c r‖u‖1−n/2 ≤ r‖u‖
n∏
i=1

min[|ui|−1/2, ‖u‖−1/4].

If ‖u‖ ≤ max(1, r−1)2ε/n, then ‖u‖n/2−1 ≤ max(1, r−1)ε, so [HB96, p. 183, Lemma 15] yields

J(r;v)�j,k r ≤ r ·max(1, r−1)ε‖u‖1−n/2 ≤ max(1, r−1)εr‖u‖
n∏
i=1

min[−,−].

Finally, if max(1, r−1)2ε/n ≤ ‖u‖ ≤ cr−2 (“log-comparable range”), then r−1 ≥ c−1/2 > 1,
so ‖u‖ ≥ R3 where R := r−2ε/3n ≥ c−ε/3n. For suitable c �j,k,ε 1, the implicit assumption
R�S,j,k 1 of [HB96, p. 187, Lemma 20] is satisfied. Now,

r‖u‖1−n/2 ≥ r(cr−2)1−n/2 ≥ r2Nε/3n = R−N

provided that N �c,ε 1, so that (following [HB98, p. 678])

J(r;v)�j,k,N R−N +Rnr‖u‖
n∏
i=1

min[−,−]� r−2ε/3r‖u‖
n∏
i=1

min[−,−].

Since c need only depend on j, k, ε, we can replace all �c,�N with �j,k,ε, as desired. �

The first half of [HB98, p. 678, Lemma 3.2] says exactly:

Lemma 4.8 (Decay for large c). If ‖c‖ > P d/2−1+ε and q ≥ 1, then Iq(c)�ε,N ‖c‖−N .

Proof. r−1J∗r (v) = r−1J(r;v) �j,k,N r−1‖v‖−N , so Iq(c) �N P n(Q/q)‖Pc/Q‖−N . (Here
j = 1 and k = 0.) But Q/P = P d/2−1, so redefining N (in terms of ε) gives the result. �

We will need a generalization of the second half of [HB98, p. 678, Lemma 3.2] to q-
derivatives of arbitrarily high order k ≥ 0, as follows. ([HB98] covers k = 0, 1.)

Lemma 4.9 (q-aspect behavior). Iq(c) = 0 for q � Q, uniformly in c. In general,

∂kq Iq(c)�k,ε
P‖c‖
qk+1

P n+ε

n∏
i=1

min[(q/P |ci|)1/2, (q/P‖c‖)1/4]

for q ∈ [1/2,∞) and k = 0, 1, 2, . . . , as long as c 6= 0. Furthermore, if B(λ) denotes a smooth
bump function supported on [1/2, 1], then q · ∂kq [y−1B(q/y)Iq(c)] satisfies the same bound for
all q ∈ (0,∞), uniformly as y ≥ 1 varies.
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Proof. If q � Q then h(Q−1q, F (x)) = 0 for all x ∈ suppw by the first line of [HB96, p. 168,
Lemma 4], so certainly then Iq(c) = 0 for all c.

In general, r := q/Q implies q · ∂q = r · ∂r, so Iq(c) = P nr−1J∗r (v) implies

qk+1 · ∂kq Iq(c) = qrk · ∂kr [P nr−1J∗r (v)] = qr−1P n(rk+1 · ∂kr [r−1J∗r (v)]).

Applying Lemma 4.7 to each of the 4k terms arising from Lemma 4.6 (for j = 1),

rk+1 · ∂kr [r−1J∗r (v)]�k,ε P
εr‖u‖

n∏
i=1

min[|ui|−1/2, ‖u‖−1/4].

Now u = Pc/q gives qk+1∂kq Iq(c)�k,ε P‖c‖P n+ε
∏n

i=1 min[−,−], as desired for q ∈ [1/2,∞).

Finally, consider q in the support [y/2, y] ⊆ [1/2,∞) of y−1B(q/y) · Iq(c). By the product
rule,

q · ∂kq [y−1B(q/y) · Iq(c)]�k q ·
k∑
j=0

|y−1−jB(q/y)| · |∂k−jq Iq(c)|.

Here |y−1−jB(q/y)| �B,k q
−1−j (since B(−) is compactly supported), so the final result

follows from the known estimates for ∂k−jq Iq(c) (for q ≥ 1/2). �

Remark 4.10. [HB98] also mentions Iq(c)� P n and ∂qIq(c)� q−1P n, but these only really
seem to be used for c = 0 [HB98, p. 690], and a little bit more if n = 4 [HB98, p. 691].

5. Bad moduli sums

In this section, we primarily use the technique of [Hoo86, pp. 78–79, esp. Lemma 12]. For
convenience below, we let

∑′
c denote a sum restricted to c with ∆(c) 6= 0, and given such c,

let
∑′

q2
denote a sum restricted to moduli q2 with rad(q2) | ∆(c) (“bad moduli”).

Definition 5.1. A (uniform) deleted box R is a product
∏
Ij in which the jth side Ij is of

the form [−C,C] \ {0} or {0}, where C is independent of j. Let T ⊆ [n] be the set of j ∈ [n]
with Ij 6= {0}. Call t := |T | the dimension of R.

5.1. Bad moduli sum over a full box. Let R ⊆ [−C,C]n be a t-dimensional deleted box.

Lemma 5.2 (Cf. [HB98, p. 684, Lemma 5.2]). For R as above,

Bσ(R) :=
∑′

c∈R

‖c‖1−(n−t)/4
∏
i∈T

|ci|−1/2

∫ �Q
1

dy

y3/2−σ+(n−t)/4

∑′

q2≤y

q
−(n+1)/2−σ
2 |Sq2(c)|

�ε C
3ε max(1, C1+t/2−(n−t)/4)Q3ε max(1, Qσ−1/2−(n−t)/4).

Remark 5.3. Since we do not use dyadic decomposition over c’s, and for other reasons, our
definition of B(R) differs from that of [HB98].

Proof. Theorem A.7 multiplicatively implies Sq(c)�ε q
1+n/2+(n−t)/6+ε

∏
i∈T sq(ci)

1/4, where
sq(?) is the multiplicative function defined by sq(p) = 1 and sq(pl) = pl for l > 1.

Now recall the fact (see e.g. [HB98, p. 683]) that for r an arbitrary real number,∑′

q2≤y

qr2 � max(1, yr)
∑′

q2≤y

1�ε max(1, yr)yε‖c‖ε.
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So for fixed c, the integrand at a given y is

�ε y
σ−3/2−(n−t)/4

∑′

q2≤y

q
(n−t)/6+ε+(1/2−σ)
2

∏
i∈T

sq(ci)
1/4

�ε y
σ−3/2−(n−t)/4 max(1, y(n−t)/6+ε+(1/2−σ))yε‖c‖ε

∏
i∈T

sq(ci)
1/4

The y factor max(yσ−3/2−(n−t)/4+ε, y−1−(n−t)/12+2ε) integrates to max(1, Qσ−1/2−(n−t)/4+2ε) or
max(1, Q−(n−t)/12+3ε), whichever is larger. (Here σ, n, t are constant as y varies.) So we get
�ε Q

3ε max(1, Qσ−1/2−(n−t)/4, Q−(n−t)/12), where the Q−(n−t)/12 can be dropped since t ≤ n.
We are left with estimating

∑
c∈R‖c‖1−(n−t)/4+ε

∏
i∈T sq(ci)

1/4|ci|−1/2, which is at most

�n 2t
∑
z≤C

z1−(n−t)/4+ε sq(z)1/4z−1/2

(∑
m≤z

sq(m)1/4m−1/2

)t−1

.

But
∑

m≤z sq(m)1/4 � z [Hoo86, p. 79, Lemma 12], so for all r ∈ R, monotonicity of mr

and partial summation implies
∑

m≤z sq(m)1/4mr �r max(1, z1+r) log z, as if sq(m) were
constant. (The log z is only for r = −1.) Thus the remaining c-aspect is at most

C2ε

C∑
z=1

z1−(n−t)/4 sq(z)1/4zt/2−1 � C3ε max(1, C1+t/2−(n−t)/4),

which is what we wanted. �

5.2. Bad moduli sum over a sparse subset. Let S be a subset of a t-dimensional deleted
box R ⊆ [−C,C]n. We evaluate the y-aspect the same way as in Lemma 5.2 to get

Bσ(S)�ε

∑′

c∈S

‖c‖1−(n−t)/4
∏
i∈T

sq(ci)
1/4|ci|−1/2

∫ �Q
1

dy

y3/2−σ+(n−t)/4

∑′

q2≤y

q
(n−t)/6+ε+(1/2−σ)
2

�ε Q
3ε max(1, Qσ−1/2−(n−t)/4)

∑′

c∈S

‖c‖1−(n−t)/4+ε
∏
i∈T

sq(ci)
1/4|ci|−1/2.

To bound the incomplete sum over c ∈ S, we use dyadic decomposition, worst-case analysis
of sq(?), and linear programming (LP) optimization. The bounding would be clearer if R
were a dyadic box, but we have tried to assume the density hypothesis only for deleted boxes.

Lemma 5.4 (LP bound). For S ⊆ R as above,∑′

c∈S

‖c‖1−(n−t)/4+ε
∏
i∈T

sq(ci)
1/4|ci|−1/2 �ε C

3ε max(1, C1−(n−t)/4)|S|1/2.

Proof. Let A = |S| � Ct; assume T = {1, . . . , t}. For 0 ≤ k1, . . . , kt ≤ 1+blog2Cc, partition
R into � (log2C)t dyadic boxes Rk with |ci| ∈ [2ki , 2ki+1). On a given box, we have∑′

c∈S∩Rk

‖c‖1−(n−t)/4+ε
∞

∏
i∈T

sq(ci)
1/4|ci|−1/2 �n 2[1−(n−t)/4+ε]‖k‖∞− 1

2
‖k‖1

∑
c∈S∩Rk

∏
i∈T

sq(ci)
1/4.

We claim (as will be proven later) that∑
c∈S∩Rk

∏
i∈T

sq(ci)
1/4 �n,ε [Cε2‖k‖1 min(A, 2‖k‖1)]1/2.
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To finish, we naively sum over k = (k1, . . . , kt) to reduce to an LP problem:∑
k

2[1−(n−t)/4+ε]‖k‖∞− 1
2
‖k‖1 [Cε2‖k‖1 min(A, 2‖k‖1)]1/2

�n (log2C)tCε/2 max
k

[
2‖k‖∞[1−(n−t)/4+ε] min(A, 2‖k‖1)1/2

]
.

• If 1− (n− t)/4 + ε ≥ 0, then the maximum occurs whenever ‖k‖∞ = 1 + blog2Cc
and ‖k‖1 ≥ A (if possible), giving �n C

1−(n−t)/4+εA1/2 for the LP.
• Otherwise, if 1− (n− t)/4 + ε ≤ 0, then we will simply use the (suboptimal) upper

bound 20A1/2 for the LP.

In either case, (log2C)tCε/2 times the LP is at most C3ε max(1, C1−(n−t)/4)A1/2, as desired.
To prove the leftover claim, we first recall (as in the proof of [Hoo86, p. 79, Lemma 12])

that every squarefull number is (non-uniquely) of the form λ2µ3, so that

#{|c| ≤ N : sq(c) ≥ X} �
∑

b ≥ X squarefull

N

b
≤
∑
µ≥1

N

µ3

∑
λ≥(X/µ3)1/2

1

λ2
�
∑
µ≥1

N

µ3

µ3/2

X1/2
� N√

X
.

By “dyadic convolution” in X, one obtains the higher-dimensional bound

#

{
(ci) ∈

∏
i∈T

{±1,±2, . . . ,±Ni} :
∏
i∈T

sq(ci) ≥ X

}
�n (log2X)t

∏
i∈T Ni√
X

.

Setting X = Y 4 and Ni = 2ki+1, we get∑
c∈S∩Rk

∏
i∈T

sq(ci)
1/4 �

∑
Y≥1

#{c ∈ S ∩Rk :
∏
i∈T

sq(ci)
1/4 ≥ Y } �ε

∑
Y≥1

min

(
A, Y ε2

‖k‖1

Y 2

)
.

Let Y∗ = 2
1
2
‖k‖1/min(A, 2‖k‖1)1/2 = max(1, 2‖k‖1/A)1/2 ≥ 1. The sum over Y ≥ Y∗ contributes

� Y ε
∗ 2‖k‖1/Y∗, while the sum over Y ≤ Y∗ contributes ≤ min(A, 2‖k‖1)Y∗ (each term is

≤ min(A, 2‖k‖1), since Y ≥ 1); both fit into Cε/22
1
2
‖k‖1 min(A, 2‖k‖1)1/2, as desired. �

Remark 5.5. By being more careful one could likely remove some ε’s.

6. Using density hypotheses

Definition 6.1. For R ⊆ Zn, let N(σ,R, T ) be the number of indices c ∈ R, with ∆(c) 6= 0
(i.e. c 6= 0 and V(c) smooth over Q), such that L(c; s) has a zero in Rσ,T := [σ, 1]× [−T, T ].

For a real function l : [1/2, 1] → R, let Hypothesis HW-l refer to Hypothesis HW with
Riemann replaced by the density hypothesis that there exists a constant M ≥ 0 such that

N(σ,R, T ) .l,M TM |R|l(σ)

for every threshold σ ∈ [1/2, 1], height T ≥ 1, and deleted box R (Definition 5.1).

Remark 6.2. The need (or at least convenience) for deleted boxes may be specific to diagonal
forms, to which we currently restrict our attention. But as [HB98, p. 675] says, “It is only
difficulties of a purely technical nature that currently prevent” an “extension to non-diagonal
forms”. (We would need a non-diagonal analysis of Airy-like integrals and ramified exponential
sums, as well as a more robust analysis of the singular locus ∆(c) = 0.)



WHEN DOES DENSITY BEAT HUA? 13

6.1. Initial reductions. Let n ∈ {4, 6} be the number of variables, d = 3 the degree, and
Q = P d/2 the standard threshold in [DFI93, HB96]’s delta method. A first goal is to prove

Q−2
∑
c∈Zn

∑
q≥1

q−nSq(c)Iq(c)� P (3n−4)/4−δ.

By the first line of Lemma 4.9, Iq(c) = 0 for q � Q (uniformly in c), so the sums over q are
finite. Also, by the trivial bound |Sq(c)| ≤ qn+1 and Lemma 4.8, each c with ‖c‖ > P 1/2+ε

individually contributes �N,ε Q
−2
∑

1≤q�Q q‖c‖−N � Q−2Q2‖c‖−N = ‖c‖−N . There are

� Cn tuples c with ‖c‖ = C, so if N ≥ n+ 2 then the total contribution from ‖c‖ > P 1/2+ε

is �N,ε

∑
C>P 1/2+ε Cn · C−N � 1, which is negligible. So for ‖c‖ ≤ C := P 1/2+ε, it remains

to estimate the sum
A =

∑′

c∈[−C,C]n

∑
q�Q

q−nSq(c)Iq(c).

(The analogous sum over ∆(c) = 0 is unconditionally �ε Q
2P 3+ε by [HB98, Section

7].) Certainly there exists a deleted box R ⊆ [−C,C]n with |A| ≤ 2n|A∗|, where

A∗ :=
∑′

c∈R

∑′

q2�Q

q−n2 Sq2(c)
∑′

q1

q−n1 Sq1(c)Iq(c),

where we have factored q as q1q2, with q1 ⊥ ∆(c) and rad(q2) | ∆(c) (conditions henceforth
denoted by the ′ in the sums).

6.2. Applying the smoothed black box to individual c’s. For ε > 0 fixed, set T := Qε,
and for each c with ∆(c) 6= 0, let σc be the infimum of the set of σ ∈ [1/2, 1] with L(c; s)
zero-free in Rσ,T . As in [HB98], we first estimate the inner sum over q1 for fixed c, q2. Fix,
once and for all, a smooth bump function B(λ) supported on [1/2, 1], such that∫ ∞

0

y−1B(q/y)dy =

∫ ∞
0

d(y/q)

y/q
B(q/y) =

∫ ∞
0

dλ

λ
B(λ−1) = 1

holds for all q. As x varies, set q := q2x, and consider (for y ≥ 1/2 an arbitrary constant)

f = fy,q2,c(x) := x−(n−1)/2 · y−1B(q/y)Iq(c) = x−(n−1)/2 · y−1B(q2x/y)Iq2x(c),

supported on q ∈ [y/2, y]. Then dx = dq/q2 and ∂/∂x = (q/x)(∂/∂q), so Lemma 4.9 implies,
by the product rule and chain rule, that∫ ∞

0

|f (k)(x)|xk−1+σcdx

�k,ε

∫ y

y/2

dq

q2

xk−1+σc

k∑
j=0

1

x(n−1)/2+j
·
( q
x

)k−j P‖c‖
q(k−j)+2

P n+ε

n∏
i=1

min[(q/P |ci|)1/2, (q/P‖c‖)1/4]

�
∫ y

y/2

dq

q2x(n+1)/2−σc

P 1+n+ε‖c‖
q2

(q/P‖c‖)(n−t)/4(q/P )t/2
∏
i∈T

|ci|−1/2

= q
(n−1)/2−σc
2

∫ y

y/2

dq

q2
qσc−(n+1)/2+t/2+(n−t)/4P 1+n+ε−t/2−(n−t)/4‖c‖1−(n−t)/4

∏
i∈T

|ci|−1/2

= q
(n−1)/2−σc
2

∫ y

y/2

dq

q
qσc−3/2−(n−t)/4P 1+n/2+ε+(n−t)/4‖c‖1−(n−t)/4

∏
i∈T

|ci|−1/2.
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Now, recall T := Qε. Define (η, c) := (ε, 1 + ε), and let k ≥ 2 be the smallest positive
integer such that ε(k − 1) ≥ c− 1/2. As y varies, take f = fy,q2,c(x) in Lemma 3.4 to get∑′

q1≥1

q−n1 Sq1(c)Iq(c) =
∑′

q1≥1

S̃q1(c)q
−(n−1)/2
1 Iq(c)

∫ ∞
0

y−1B(q2q1/y)dy

=

∫ �Q
q2

dy
∑′

q1≥1

S̃q1(c)fy,q2,c(q1)

�ε

∫ �Q
q2

dy‖c‖ε|Qε + 2|ε(Qε + 1)

∫ ∞
0

|f (k)
y,q2,c

(x)|xk−1+σcdx.

(The integral may be restricted to q2 ≤ y � Q, since fy,q2,c(q1) = 0 holds unless q2q1/y ∈
[1/2, 1] and Iq(c) 6= 0.) We plug in the aforementioned Lemma 4.9 estimate, noting that∫ y

y/2

dq

q
qσc−3/2−(n−t)/4 � yσc−3/2−(n−t)/4,

so the individual contribution of c to A∗ is (by switching the y-integral and q2-sum)∑′

q2�Q

q−n2 Sq2(c)
∑′

q1≥1

q−n1 Sq1(c)Iq(c)

�ε P
1+n/2+ε+(n−t)/4‖c‖1−(n−t)/4

∏
i∈T

|ci|−1/2

∫ �Q
1

dy

y3/2−σc+(n−t)/4

∑′

q2≤y

q
−(n+1)/2−σc
2 |Sq2(c)|.

(We have absorbed a ‖c‖ε|Qε + 2|ε(Qε + 1) factor into P ε.)
We are now ready to sum over c ∈ R. In what follows, assume Hypothesis HW-l.

For σ∗ ∈ (1/2, 1) a threshold to be determined later, we will use a worst-case estimate
(Lemma 5.4) for σc ≥ σ∗, and the technique of [Hoo86, HB98] (Lemma 5.2) for σc ≤ σ∗. Let
Rσ := {c ∈ R : σc ≥ σ}, so |Rσ| � TM |R|l(σ) = QMε|R|l(σ). For S ⊆ R, let

Bσ(S) :=
∑′

c∈S

‖c‖1−(n−t)/4
∏
i∈T

|ci|−1/2

∫ �Q
1

dy

y3/2−σ+(n−t)/4

∑′

q2≤y

q
−(n+1)/2−σ
2 |Sq2(c)|.

6.3. Density integral over c’s. Given σ ∈ [1/2, 1], consider the “σ-optimistic” partial sum

P 1+n/2+ε+(n−t)/4Bσ(Rσ−ε).

The point is, we can integrate this over σ ∈ [1/2, 1] to recover something resembling

P 1+n/2+ε+(n−t)/4
∑′

c∈R

‖c‖1−(n−t)/4
∏
i∈T

|ci|−1/2

∫ �Q
1

dy

y3/2−σc+(n−t)/4

∑′

q2≤y

q
−(n+1)/2−σc
2 |Sq2(c)|

(our upper bound for A∗). Indeed, (y/q2)σ is increasing, and in fact exponential in σ, so∫ 1

1/2

1c∈Rσ−ε(y/q2)σdσ =

∫ σc+ε

1/2

(y/q2)σdσ ≥
∫ σc+ε

σc

(y/q2)σdσ ≥ ε(y/q2)σc

uniformly for all y, q2, c such that q2 ≤ y and 1 ≤ y � Q. There are finitely many q2, c
appearing altogether, so summing gives the desired density integral bound for A∗.



WHEN DOES DENSITY BEAT HUA? 15

6.4. Refined estimate over near-critical c’s. On the one hand, Lemma 5.2 implies

Bσ(Rσ−ε) ≤ Bσ(R)�ε Q
3ε max(1, Qσ−1/2−(n−t)/4)C3ε max(1, C1+t/2−(n−t)/4),

so plugging in Q = P 3/2 and C = P 1/2+ε and redefining ε yields

P 1+n/2+ε+(n−t)/4Bσ(Rσ−ε)

�ε P
1+n/2+ε+(n−t)/4 max(1, Qσ−1/2−(n−t)/4) max(1, C1+t/2−(n−t)/4)

= P 1+n
2

+n−t
4

+ε max(1, P
3
2

(σ− 1
2

)− 3
8

(n−t)) max(1, P
1
2

+ t
4
−n−t

8 ).

To bound the final expression, we place everything inside a max(−) of 2× 2 = 4 arguments,
each a linear program. Since 1 ≤ t ≤ n, it now remains (as in [HB98]) to check whether the
exponents for t = 1 and t = n are satisfactory:

• if t = n we get an exponent of 3
2

+ 3
4
n+ 3

2
(σ − 1

2
) + ε, while

• at t = 1 we get something at most 3
4

+ 3
4
n+ε+max(0, 3

2
(1− 1

2
)− 3

8
(n−1))+max(0, 3

4
−

n−1
8

) = 3
4

+ 3
4
n+ ε+ max(0, 9−3n

8
) + max(0, 7−n

8
), since σ ≤ 1. If n ≥ 3 then this is at

most 3
4

+ 3
4
n+ ε+ 0 + 4

8
= 5

4
+ 3

4
n+ ε.

One sees that 3
2

+ 3
4
n ≥ 5

4
+ 3

4
n for all n, so

P 1+n
2

+ε+n−t
4 Bσ(Rσ−ε)�ε P

3
2

+ 3
4
n+ 3

2
(σ− 1

2
)+ε

if n ≥ 3, regardless of the values of σ ∈ [1/2, 1] and t ∈ {1, . . . , n}.

6.5. Worst-case estimate over general c’s. On the other hand, Lemma 5.4 implies

Bσ(Rσ−ε)� Q3ε max(1, Qσ−1/2−(n−t)/4)C3ε max(1, C1−(n−t)/4)|Rσ−ε|1/2.
Here |Rσ−ε|1/2 � QMε/2C l(σ−ε)t/2, so P 1+n/2+ε+(n−t)/4Bσ(Rσ−ε) is (after redefining ε)

�ε P
1+n/2+ε+(n−t)/4 max(1, Qσ−1/2−(n−t)/4) max(1, C1−(n−t)/4)C l(σ−ε)t/2

�ε P
1+n

2
+ε+n−t

4 max(1, P
3
2

(σ− 1
2

)− 3
8

(n−t))P l(σ−ε) t
4

+max(0, 1
2
−n−t

8
)

upon substituting Q = P 3/2 and C = P 1/2+ε. In particular,

• if t = n we get an exponent of 3
2

+ 1
2
n+ 3

2
(σ − 1

2
) + ε+ l(σ − ε)n

4
, while

• at t = 1 we get 3
4

+ 3
4
n+ ε+ max(0, 3

2
(σ− 1

2
)− 3

8
(n− 1)) + 1

4
l(σ− ε) + max(0, 1

2
− n−1

8
).

As seen earlier, 3
2
(σ − 1

2
) − 3

8
(n − 1) ≤ 3

4
− 3

8
(n − 1) = 9−3n

8
, so if n ≥ 3 we have at

most 3
4

+ 3
4
n+ ε+ 0 + 1

4
· 1 + (1

2
− 2

8
) = 5

4
+ 3

4
n+ ε.

Although it is no longer simple to uniformly compare t = n and t = 1, what we do see is that
for t = 1, the 5

4
+ 3

4
n+ ε is less than 3

2
+ 3

4
n+ ε, the exponent achieved by [HB98] assuming

Riemann. So again, essentially only t = n is of interest.

Should check over all numerics (in all steps of proof) carefully sometime.

6.6. Choosing the critical threshold σ∗. For every σ ∈ [1/2, 1] we should use the mini-
mum of the two estimates (refined vs. worst-case) when estimating

A∗ �ε

∫ 1

1/2

P 1+n/2+ε+(n−t)/4Bσ(Rσ−ε)dσ.

In fact, by inspection, our worst-case estimate is refined enough to always be at least as good
as the refined bound, so we should always use the worst-case estimate.
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In particular, if l(σ) is not too far from 2(1− σ), then if l(σ∗ − ε) = 1 with σ∗ maximal
(so σ∗ ≈ 1/2 + ε), we expect a final bound for N(F,w) around Qσ∗−1/2 ≈ Qε = P 3ε/2 worse
than what [HB98] has achieved. For n = 4 this beats Salberger’s N(F \ lines, w)�ε P

12/7+ε

[Sal15]. For n = 6 this gets N(F,w) �ε P
3+ε, which is essentially best possible and beats

Hua’s P 7/2+ε.

Appendix A. Common exponential sum estimates (Hua–Weil, etc.)

Theorem A.1 (Hua–Weil: Hua 1957; see Vaughan, p. 38, Lemma 4.1). If (q, a) = 1, then

S(q, a, b) :=
∑
x∈Z/q

eq(ax
d + bx) .d,ε q

1/2+ε(q, b),

where the ε can be removed when q is a prime power.

Remark A.2. Apart from the special case when q = 3l and v3(b) = 1, Hooley 1986 only needs
this when q = pl is a prime power and vp(b) = 0, in which case the proof is slightly simpler.

When b = 0, recall that S(q, a) := S(q, a, 0) is used in understanding the singular series for
Waring’s problem, and the (essentially) optimal result is as follows:

Theorem A.3 (See Vaughan, p. 47, Theorem 4.2). If (q, a) = 1, then S(q, a) .d q1−1/d.

Theorem A.4 (Hua 1940; see Vaughan, p. 112, Theorem 7.1). If (q, a1, . . . , ad) = 1, then

S(q, a1, . . . , ak) :=
∑
x∈Z/q

eq(a1x+ · · ·+ adx
d) .d,ε q

1−1/d+ε.

Remark A.5. We only need the special case when d = 3 and a2 = 0, which appears to have a
special recursive structure (allowing an alternative, easier proof): see below.

A.1. Optimally bounding one-variable sums. From now on, assume d = 3. [Hoo86,
HB98] have combined and improved the preceding classical estimates. [HB98] has removed
some p - a hypotheses, as long as one allows the implied constant to depend on vp(a).

Lemma A.6 ([Hoo86, p. 68, Equation (45)]). If p - a while p2 | b and l ≥ 3, then

S(pl, a, b) = p2S(pl−3, a, bp−2).

Below, let β := vp(b). We will let β exceed l for simplicity, even though β can be trivially
replaced by min(β, l) in the inequality below.

Theorem A.7 ([Hoo86, p. 67, Equation (43)]). If p - a, then

S(pl, a, b) . pmin(l/2+β/4,2l/3),

which beats p2l/3 when β < 2l/3. Furthermore, pβ/4 can be removed when l ≤ 2 or β = 1.

Proof for p 6= 3. The proof will be by induction on l. If l = 1, use the Weil bound for
exponential sums (if β ≥ 1, cubic Gauss sums suffice). If β = 0, i.e. (pl, b) = 1, we reduce to
the already-proven Hua–Weil.

Now suppose that l ≥ 2, and also that β ≥ 1, i.e. p | b. Write x = zpl−1 + y with
y ∈ [1, pl−1] and z ∈ [1, p] to get (note (pl−1)2 ≡ 0 (mod pl))

S(pl, a, b) =
∑
y,z

epl((ay
3 + by) + (3ay2 + b)zpl−1).
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Since p | b yet p - 3a is assumed, the sum over z dies unless p | y. So setting y = pu we get

S(pl, a, b) = p
∑
u

epl(ap
3u3 + bpu),

ranging over u ∈ [1, pl−2].
If l = 2, there is just a single u in the sum, so S(p2, a, b) = p.
If l ≥ 3 and β = 1, write epl(ap

3u3 + bpu) = epl−2(apu3 + (bp−1)u). The (reduced) cubic
term epl−2(apu3) = epl−3(au3) is constant as u varies in a fixed residue class modulo pl−3, so
S(pl, a, b) = 0 from cancellation in the (reduced) linear term, where p - bp−1.

If l ≥ 3 and β ≥ 2, then in fact epl(ap
3u3 + bpu) = epl−3(au3 + (bp−2)u), so

S(pl, a, b) = p2S(pl−3, a, bp−2).

(Hooley requires l ≥ 4, but for l = 3 everything still seems OK.) We can now finish by the
inductive hypothesis, since

2 + min

(
l − 3

2
+
β − 2

4
,
2(l − 3)

3

)
= min

(
l

2
+
β

4
,
2l

3

)
.

In particular, we can circumvent [Hoo86]’s citation of Hua 1940. �

Proof for p = 3. The proof differs as follows. First, if β ≤ 1 (not just if β = 0), we use
Hua–Weil, absorbing the factor (pl, b) ≤ 3 into our implied constant. Since p = 3 is constant,
we may also absorb the l ≤ 2 case entirely into the implied constant.

Then, when l ≥ 3 and β ≥ 2, we instead write x = zpl−2 +y with y ∈ [1, pl−2] and z ∈ [1, p2]
to get (note 3(pl−2)2 ≡ 0 (mod pl) and (pl−2)3 ≡ 0 (mod pl) for l ≥ 3)

S(pl, a, b) =
∑
y,z

epl((ay
3 + by) + (3ay2 + b)zpl−2).

Since p2 | b yet p2 - 3a is assumed, the sum over z dies unless p | y. So for y = pu, we get

S(pl, a, b) = p2
∑
u

epl(ap
3u3 + bpu),

ranging over u ∈ [1, pl−3]. Here epl(ap
3u3 + bpu) = epl−3(au3 + (bp−2)u), so

S(pl, a, b) = p2S(pl−3, a, bp−2).

The inductive argument is the same as before. �

Appendix B. Bounding the contribution from singular hyperplane sections

For n ∈ {4, 6}, this is done (satisfactorily and unconditionally) in [HB98, Section 7].

Appendix C. Unused ideas

• While t = n seems to be the dominant case, we currently carry around a bunch
of messy (n − t)/4 and (n − t)/6 exponents, for boxes of dimension t < n. Is this
essential? What if F is a generic non-diagonal cubic hypersurface?
• Extend bad ramified exponential sum bounds to non-diagonal case? Maybe the Igusa

zeta function would be relevant.
• Extend integral estimates to non-diagonal case? How close (or far) are these estimates

are from the truth?
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• The shape of Hooley’s Airy integral and ramified sum estimates seems a bit different
than ours. In particular he has some |ci|−1/4 where we have |ci|−1/2 yet is able to
recover the full result in [Hoo96]; this is worth looking into.
• May be interesting to think about what happens for n = 3 in delta method?
• Compute Gamma factor for n = 5 sometime? Also maybe other n besides 4, 5, 6.
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