
AXIOMATIZING BOMBIERI–HUXLEY

VICTOR WANG

Abstract. We axiomatize the methods of Bombieri and Huxley to prove a zero-density
estimate for a general family F of primitive cusp forms on GL(m)/Q, assuming Ramanujan
for f ∈ F at all places, an optimal large sieve inequality with λf (n) coefficients, “Lindelöf on
average” for a specified moment of L(f, 1/2 + it), and a power bound on the growth rate of
F. We also discuss what can be obtained with a suboptimal large sieve.

The lack of complete multiplicativity of λf (n) complicates L’s approximate inverse M and
zero-detecting function Z = LM − 1. For a standard large sieve with λf (n) coefficients to
still apply without loss, we rely on the fact that when n1 is square-free, λf (n0)λf (n1) has a
“separable” decomposition over square-full d of the form

∑
d|n0n1

bf (d)λf (n0n1/d)1rad(d)|n1
.

Crucially, 1rad(d)|n1
is independent of f , while bf (d) is independent of n0, n1.

We also sketch an alternative, possibly more intuitive approach, via the completely
multiplicative “first approximation”

∏
p>P (1− λf (p)p−s)−1, for suitable P � 1.
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1. Assumptions and statement of zero-density theorem

Let Q, T ≥ 1 be parameters. Given a family F of primitive cusp forms on GL(m)/Q, let
FQ consist of the forms f ∈ F with analytic conductor q(f, s)� Q for s ∈ [0, 1]× [−T, T ].
(We could also consider other, e.g. geometric, parameterizations of F.) Assume the following:
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• a power growth bound |FQ| � QO(1);
• Ramanujan for f ∈ F at all places (though a slightly weaker assumption suffices);
• a large sieve inequality of the form

‖Λa‖22 �F C(|FQ|, N)‖a‖22,
where Λ is a |FQ| × bNc matrix with entries λf (n) for f ∈ FQ and n ≤ N ; and
• for some fixed l ≥ 1, a moment bound on the critical line of the form∫

t∈R
exp(−|t|/T )

∑
f∈FQ

|L(f, 1/2 + it)|2ldt�F,ε T |FQ|Qε.

Remark 1.1. For convenience in numerics later on, we may make the harmless assumptions
that C(|FQ|, N) is increasing in N and C(|FQ|, N) ≤ |FQ|N (the trivial bound).

Remark 1.2. A moment bound worse than Qε (Lindelöf) on average could still be useful, but
with the technique below, it would restrict the final zero-density estimate to σ ≥ σ0 > 1/2.

Given an optimal large sieve constant C(|FQ|, N)� |FQ|+N , Proposition 3.1 records

N(σ,FQ, T )�ε TQ
ε|FQ|(2−2σ)(l+1)/(l+2(1−σ))

for the number of forms f ∈ FQ such that L(f, s) has a zero ρ ∈ [σ, 1]× [−T, T ]. When d = 1
and F consists of primitive Dirichlet characters over Q, we recover the relevant Q-aspect
results of Bombieri [Bom65] and Huxley [Hux71] for l = 1 and l = 4, respectively.

Remark 1.3. As l → ∞, the bound approaches the “Grand Density Hypothesis” in the
Q-aspect, with linear exponent 2− 2σ interpolating between 1 at σ = 1/2 and 0 at σ = 1.

Given instead a suboptimal large sieve, Proposition 3.1 becomes messier, but we still
get nontrivial results near σ = 1/2 as long as there exist τ > 0 and θ ≥ 1/2 such that
C(|FQ|, Qτ )� |FQ| and C(|FQ|, Qr)/Qr � |FQ|1−δ for r ∈ [min(τ, θ), τ + θ], for some δ > 0.

Remark 1.4. Here Qτ represents the length of a finite “approximate inverse” M of L, while
Qθ+ε represents the length of an approximation of L for σ = 1. When interpolating between
σ = 1/2 and 1, the key is τ : the large sieve prefers τ smaller near 1/2, but larger near 1.

To resolve the tension, perhaps the terms n > Qτ of Z := LM − 1 could be handled better,
especially near 1. Or near 1/2, if one could bound |Z|e or |LM |e on average for some e > 0,
ideally e = 2, without separating L and M (see Section 3.2), then perhaps one could take τ
arbitrarily large, or weaken the “Lindelöf on average” assumption. Maybe the distribution of
low-lying zeros of L(f, s) would come into play in such a refined analysis.

2. Constructing and analyzing an approximate inverse M

There may be other ways to proceed, but we will take M(f, s) to be the (finite, hence
entire) zth partial sum of the Dirichlet series expansion of 1/L(f, s), for some z ≥ 1.

Here the local factor of L(f, s) at p takes the form

Lp(f, s) =
∑
k≥0

λf (p
k)p−ks =

∏
i≤m

(1− αf,i(p)p−s)−1

= (1− ef,1(p)p−s ± · · ·+ (−1)mef,m(p)p−ms)−1
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where ef,j(p) is the jth elementary symmetric sum of the local roots αf,1(p), . . . , αf,m(p)
(some roots possibly equal to zero), with ef,j(p) = 0 for j ≥ m+ 1, while

λf (p
k) = hf,k(p) :=

∑
k1+···+km=k

∏
i≤m

αf,i(p)
ki

is the kth complete homogeneous symmetric polynomial in the local roots. The expansion

1

L(f, s)
=
∏
p

∑
j≥0

(−1)jef,j(p)p
−js =

∑
n≥1

bf (n)n−s

is thus supported on n of the form n1n
2
2 · · ·nmm with n1, . . . , nm square-free and pairwise

coprime. Note that λf ∗ bf = 1?=1(?) and λf (p) = hf,1(p) = ef,1(p) = −bf (p).
We may now explicitly compute bf (n) :=

∏
p|n(−1)vp(n)ef,vp(n)(p), and

M(f, s) :=
∑
n≤z

bf (n)n−s =
∑
n≤z

n−s
∏
j≥1

∏
p|nj

bf (p
j) =

∑
n≤z

n−sµ(n1)λf (n1)bf (d),

where d := n2
2 · · ·nmm = n/n1 is square-full.

2.1. Square-full mold for large sieve. M(f, s) is of the prototypical form

Sd≤z =
∑
n≤z

n−s
∑
d|n

ad(n/d)λf (n/d)bf (d) =
∑
d≤z

bf (d)
∑

n1≤z/d

λf (n1)ad(n1)(n1d)−s

where d is square-full, ad(n1) := µ(n1)1gcd(d,n1)=1 � 1, and by the Ramanujan assumption,

bf(d)�
∏

p|d
(

m
vp(d)

)
�ε d

ε (uniformly over f). Intuitively we will think of the contribution

from d > 1 in such a sum as “essentially of second order” since by Cauchy,

|Sd≤z|2 ≤

(∑
d≤z

|bf (d)|2d−1/2
)∑

d≤z

d1/2−2σ

∣∣∣∣∣∣
∑

n1≤z/d

λf (n1)ad(n1)n
−s
1

∣∣∣∣∣∣
2 ,

the key being that
∑

d≤z d
−1/2 �ε z

ε: there are O(D1/2) square-full numbers d � D. The
estimates become slightly more transparent, up to factors of log z, if one first decomposes
d ≤ z dyadically; for a given D � z one has |bf (d)| �ε D

ε for d � D, so

|Sd�D|2 �ε D
1/2+2ε

∑
d�D

∣∣∣∣∣∣
∑

n1≤z/d

λf (n1)ad(n1)(n1d)−s

∣∣∣∣∣∣
2

by Cauchy. Heuristically, D1/2
∑

d�D � D supd�D, but later we will want to sum over f (in
order to apply the large sieve inequality) before taking the sup over d � D.

2.2. Rewriting the zero-detecting function. We will use Z(f, s) := LM − 1, for which
L(f, ρ) = 0 implies Z(f, ρ) = −1. To bound the relevant Bombieri–Huxley moments, we need
to compute Z(f, s) to reasonable precision for σ ≥ 1. For simplicity, we first naively compute
the expansion for σ ≥ 1 + ε, where the algebraic structure is clearest, and then we explain
the necessary modifications for σ ≥ 1/2 + ε, though we will only use σ = 1.
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For σ ≥ 1 + ε, and a large parameter x ≥ z to be chosen later, Ramanujan implies

L(f, s)M(f, s) =

(∑
n0≤x

λf (n0)n
−s
0 +Oε(x

−ε/2)

)( ∑
n1d1≤z

(n1d1)
−sad1(n1)bf (d1)λf (n1)

)
= Oε(x

−ε/2 log z) + 1 + E(f, s),

with “arithmetic error term” E(f, s) given by a sum over d1 square-full, n0 ≤ x, and n1d1 ≤ z:

E(f, s) :=
∑

z<n≤zx

n−s
∑
d1|n

bf (d1)
∑

n0n1=n/d1

λf (n0)λf (n1)ad1(n1).

Here ad1(n1) restricts n1 to be square-free. Let vp(n0) = k ≥ 0. If p | n1, so vp(n1) = 1, then

λf (p
k)λf (p) = λf (p

k)ef,1(p) = λf (p
k+1) +

∑
2≤j≤k+1

λf (p
k+1−j)bf (p

j),

using λf ∗ bf = 1?=1 for ? = pk+1; if p - n1, then of course λf (p
k)λf (p

0) = λf (p
k). Hence

λf (n0)λf (n1) =
∑

d0|n0n1

λf (n0n1/d0)bf (d0)1rad(d0)|n1 ,

where d0 is square-full. Since d0 | n0n1 = n/d1 implies d0d1 | n, we may write

E(f, s) =
∑

z<n≤zx

n−s
∑
d0d1|n

bf (d1)λf (n/d1d0)bf (d0)Ad0,d1(n/d1),

where (recall ad1(n1) = µ(n1)1d1⊥n1 � 1)

Ad0,d1(N) :=
∑

n0n1=N

1n0≤x1n1d1≤z1rad(d0)|n1ad1(n1)�ε N
ε.

We could do without further simplification, though in fact Ad0,d1(N) 6= 0 implies d0 ⊥ d1, so

E(f, s) =
∑

z<n≤zx

n−s
∑
d|n

bf (d)λf (n/d)αd(n/d),

where d is square-full and αd(n/d) :=
∑

d0d1=d
Ad0,d1(n/d1)1d0⊥d1 �ε d

ε/2nε/2 � nε.
The following variant is not essential to our approach, though it could be useful for others.

Proposition 2.1 (Efficient smooth approximation). If f ∈ FQ and 1/2 + ε0 ≤ σ ≤ 1, then

|L(f, s)M(f, s)− 1| �ε0,B Q
−Bz + |Ẽ(f, s)|+X1/2−σY σ−1/2

∫
v∈R
|E?

v(f, s)|e−|v|dv

for |t| ≤ Qε0/mT/m, given X ≥ Qε0z and Y ≥ 1 such that XY �ε0 Q
1+3ε0. Here

Ẽ(f, s) :=
∑

z<n≤zQε0X

n−s
∑
d|n

bf (d)λf (n/d)α̃d(n/d)

E?
v(f, s) :=

∑
1≤l≤zY

l−s
∑
d|l

bf (d)λf (l/d)α?v,d(l/d),

for certain α̃d(n/d)�ε n
ε and α?v,d(l/d)�ε l

ε min(1, l/Y )σ−1/2 to be computed below.
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Proof. For η1 := σ − 1/2 ≥ ε0, Proposition B.5 shows (cf. [IK04, p. 259, (10.71)])

L(f, s)−
∑

n≤Qε0X

λf (n)n−sw
( n
X

)
�ε0,B Q

−B+X−η1Y η1

∫
v∈R

∣∣∣∣∣∑
l≤Y

λf (l)l
−s
(
l

Y

)η1+iv∣∣∣∣∣ e−|v|dv.
To account for the weights w(n/X) and (l/Y )η1+iv, we modify Ad0,d1(N) as follows:

Ãd0,d1(N) :=
∑

n0n1=N

w(n0/X)1n1d1≤z1rad(d0)|n1ad1(n1)�ε N
ε

A?v,d0,d1(N) :=
∑

l0n1=N

1l0≤Y (l0/Y )η1+iv1n1d1≤z1rad(d0)|n1ad1(n1)�ε N
ε min(1, N/Y )η1 .

Again Ãd0,d1(N) 6= 0 or A?v,d0,d1(N) 6= 0 implies d0 ⊥ d1, and clearly M(f, s)� z, so

L(f, s)M(f, s) = 1 +Om,ε,B(Q−Bz) + Ẽ(f, s) +Om,ε,B(X1/2−σY σ−1/2)

∫
v∈R
|E?

v(f, s)|e−|v|dv

where d is square-full, α̃d(n/d) :=
∑

d0d1=d
Ãd0,d1(n/d1)1d0⊥d1 �ε d

ε/2nε/2 � nε, and similarly
α?v,d(l/d) :=

∑
d0d1=d

A?v,d0,d1(l/d1)1d0⊥d1 �ε l
ε min(1, l/Y )η1 .

A priori, the sum Ẽ(f, s) should include n ≤ z. But w(n0/X) = 1 +O(e−X/n0), so

Ãd0,d1(N)− Ad0,d1(N)�
∑

n0n1=N

e−X/n0 �ε N
εe−X/z ≤ zεe−Q

ε0

for N ≤ z. Now if n ≤ z, then n/d1 ≤ z and d ≤ z for d1 | d | n, so

α̃d(n/d)− αd(n/d)�ε

∑
d0d1=d

zεe−Q
ε �ε z

2εe−Q
ε0

∑
d|n

bf (d)λf (n/d)[α̃d(n/d)− αd(n/d)]�ε n
ε · nε · z2εe−Qε0 ≤ z4εe−Q

ε0 .

But
∑

d|n bf (d)λf (n/d)αd(n/d) = 1n=1 for n ≤ z by definition of M(f, s) as a partial inverse

of L(f, s), so
∑

n≤z n
−s∑

d|n bf (d)λf (n/d)α̃d(n/d) = 1 +Oε(z · e−Q
ε0 ), as desired. �

3. Zero-detecting function analysis

For convenience, enlarge F to be closed under dualization. Following [Bom65, pp. 215–218,
Section 4], fix an even integer A ≥ 2 and define F (s) :=

∏
f∈FQ(1 − Z(f, s)A), an entire

function with F (R) ⊆ R; if L(f, ρ) = 0 for some f ∈ FQ, then Z(f, ρ) = −1, so F (ρ) = 0.
If z � 1, then F (s) 6= 0 on σ = 2, since |Z(f, 2 + it)| �ε z

−1+ε by the triangle inequality.
Define G = logF by argF (2) = 0 on the complement of V =

⋃
F (ρ)=0{s ≤ ρ}. For s ∈ V ,

set G(s) = limε→0+ [G(s+ iε) +G(s− iε)]/2; then
∫
`
F ′(s)/F (s)ds = G(`1)−G(`0) for any

horizontal path ` = `0`1 with F (`0), F (`1) 6= 0, provided we take the Cauchy principal value
when ` hits a zero ρ. Now

∫
F ′/F = ∆G on the path σ − iT, 2− iT, 2 + iT, σ + iT , so

1

2
· 2πN(σ,FQ, T ) ≤ =[logF (σ + iT )− logF (σ − iT )]−=

∫
|t|≤T

F ′(σ + it)

F (σ + it)
d(it)
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for all but finitely many σ, by the argument principle. Integrating over σ ∈ [α, 2] using
Fubini–Tonelli [Lit24, p. 300, fn. *], we get Littlewood’s lemma [Lit24, p. 299, Theorem 1]:

π

∫ 2

α

N(σ,FQ, T )dσ ≤
∫ 2

α

[argF (σ + iT )− argF (σ − iT )]dσ −
∫
|t|≤T
<
∫ 2

α

F ′(σ + it)

F (σ + it)
dσdt,

the inner integral being log|F (2 + it)| − log|F (α + it)| for all but finitely many t.
Now, |logF (2 + it)| �ε |FQ|zA(−1+ε) � 1 if A� 1 (we will choose z � Qτ for τ > 0 fixed),

cf. [Bom65, p. 217, (4.7)], so the proof of [Bom65, p. 216, Lemma 6] goes through:∫ 2

α

[argF (σ + it)− argF (σ − it)]dσ � 1 +

∫ 2π

0

log+|F (2 + it+ (2− α)eiθ)|dθ

for α ∈ [1/2, 1] and t ∈ R. Using log+(?) := max(0, log(?)) to bound log|F (α + it)|, we get

π

∫ 2

α

N(σ,FQ, T )dσ �
∫
|t|≤T

log+|F (α+ it)|dt+T + 1 +

∫ 2π

0

log+|F (2 + iT + (2−α)eiθ)|dθ.

Then averaging over T , using monotonicity of N(σ,FQ,−), gives∫ 2

α

N(σ,FQ, T )dσ � T + sup
α≤σ≤4

∫
|t|≤2T+2

log+|F (σ + it)|dt

as in [Bom65, p. 223, (4.20)–(4.21)]. Here

log+|F (s)| ≤
∑
f∈FQ

log+|1− Z(f, s)A|.

3.1. Interpolation and benchmarks. Following [Bom65, pp. 221–222], define

Φ(σ, T ) :=

∫
|t|≤T

∑
f∈FQ

log+|1− Z(f, σ + it)A|dt

and ZT (f, s) := Z(f, s)/ cos(s/T ) for T ≥ 4, so that

IT (σ;λ) :=

∫
t∈R

∑
f∈FQ

|ZT (f, σ + it)|1/λdt�
∫
t∈R

∑
f∈FQ

|exp(−|t|/T )Z(f, σ + it)|1/λdt

for σ ∈ [1/2, 1]. (In [Bom65]’s notation, JT (σ;λ) = IT (σ;λ)λ.) If λ, µ ∈ [A−1, A], then for

ν = ν(σ) := 2(1− σ)λ+ (2σ − 1)µ ∈ [A−1, A]

we have log+|1− wA| ≤ log(1 + |w|A)�A |w|1/ν for w ∈ C (cf. [Bom65, p. 222, (4.18)]), so

Φ(σ, T )�
∫
|t|≤T

∑
f∈FQ

|Z(f, σ + it)|1/νdt� IT (σ, ν) ≤ IT (1/2;λ)2(1−σ)λ/νIT (1;µ)(2σ−1)µ/ν

by [Bom65, p. 221, Lemma 10] generalizing Gabriel’s holomorphic convexity theorem.
Before deriving estimates for IT (1/2;λ) and IT (1;µ) in the next two sections, we first set

benchmarks for obtaining a nontrivial zero-density theorem near the critical line.

Proposition 3.1. Assume IT (1/2;λ) �ε TQ
ε|FQ| and IT (1;µ) �ε TQ

ε|FQ|1−δ for some
fixed δ > 0. Then N(α,FQ, T )�ε TQ

ε|FQ|l(α)+ε for α ∈ [1/2, 1] and T ≥ 1, where

l(σ) :=
2(1− σ)λ

ν(σ)
· 1 +

(2σ − 1)µ

ν(σ)
· (1− δ) = 1− δ (2σ − 1)µ

2(1− σ)λ+ (2σ − 1)µ
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is decreasing and concave on [1/2, 1], with slope −2δµ/λ at σ = 1/2.

Proof. The trivial bound N(α,FQ, T ) ≤ |FQ| gives exponent 1 = l(1/2) = l(α) + o(1) as
ε→ 0 if α ≤ 1/2 + ε, by continuity of l(σ) at σ = 1/2. If α ≥ 1/2 + ε then [Bom65, p. 224]

N(α,FQ, T ) ≤ ε−1
∫ 2

α−ε
N(σ,FQ, T )dσ �ε T + sup

α−ε≤σ≤4
Φ(σ, 2T + 2)

Here Φ(σ, 2T + 2)� (2T + 2)Qε|FQ|l(σ) by construction of l(σ). Now l(σ) is decreasing on
[1/2, 1] since δ > 0 and (2σ − 1)µ : 2(1− σ)λ is increasing, so N(α,FQ, T )�ε TQ

ε|FQ|l(α−ε).
But l(α − ε) = l(α) + O(ε) since l′(σ), the derivative of a smooth function, is uniformly
bounded on [1/2, 1], so as ε→ 0 the exponent on |FQ| is l(α) + o(1), as desired. �

3.2. Moment estimates on the critical line. Take λ = (l + 1)/(2l), so

|Z(f, s)|1/λ � max(1, |L(f, s)M(f, s)|1/λ)� 1 + |L(f, s)|2l + l · |M(f, s)|2

IT (1/2;λ)�
∫
t∈R

exp(−|t|/λT )
∑
f∈FQ

(1 + |L(f, 1/2 + it)|2l + |M(f, 1/2 + it)|2)dt

by Young’s inequality. By our 2lth moment “Lindelöf on average” hypothesis, the contribution
from 1 + |L(f, 1/2 + it)|2l is �ε λT |FQ|Qε. On the other hand, the strategy described in
Section 2.1, with D � 1 and d ∈ Z implicit everywhere, yields, by the large sieve,

∑
f∈FQ

|M(f, s)|2 �ε (log z) sup
D�z

D1+2ε sup
d�D

∑
f∈FQ

∣∣∣∣∣∣
∑

n1≤z/d

λf (n1)ad(n1)(n1d)−s

∣∣∣∣∣∣
2

� (log z) sup
D�z

D1+2ε sup
d�D

C(|FQ|, z/d)
∑

n1≤z/d

|ad(n1)|2(n1d)−2σ

�ε z
ε sup
D�z

D sup
d�D

C(|FQ|, z/d)D−2σ;

we use 2σ ≥ 1 to evaluate
∑

n1
. If C(|FQ|,−) is increasing, then the sup occurs when D � 1

and d = 1, giving a bound of zεC(|FQ|, z). For σ = 1/2, we may then take z � Qτ to get

IT (1/2;λ)�ε λTQ
ε|FQ|

provided C(|FQ|, Qτ )�ε |FQ|Qε, e.g. if C(|FQ|, N)� |FQ|+N and Qτ � |FQ|.

3.3. Moment estimates to the right. Take µ = 1/2. If σ ≥ 1 + ε0, then

IT (σ;µ)�ε0

∫
t∈R

exp(−|t|/µT )
∑
f∈FQ

(x−ε0(log z)2 + |E(f, s)|2)dt.

The method of Section 2.1, with an extra dyadic decomposition in n1, yields

∑
f∈FQ

|E(f, s)|2 � (log zx) sup
D�zx

D1+2ε sup
d�D

∑
f∈FQ

∣∣∣∣∣∣
∑

z/d<n1≤zx/d

λf (n1)αd(n1)(n1d)−s

∣∣∣∣∣∣
2

� (log zx)2 sup
D�zx

D1+2ε sup
z/D�N1�zx/D

C(|FQ|, N1)
∑
n1�N1

|αd(n1)|2(n1d)−2σ

�ε (zx)ε sup
D�zx

D sup
z/D�N1�zx/D

C(|FQ|, N1)N1(DN1)
−2σ,



8 VICTOR WANG

where it is implicitly understood that N1, D � 1 everywhere. Changing variables from N1

to N := N1D, we get (zx)ε supD,N C(|FQ|, N/D)N1−2σ over z � N � zx and 1� D � zx,
which is �ε (zx)ε supN C(|FQ|, N)N1−2σ if C(|FQ|,−) is increasing.

If σ ≥ 1 + ε0 and x � Qθ (recall z � Qτ ), we get

IT (σ;µ)�ε,ε0 µT |FQ|x−ε0(log z)2 + µT (zx)εz2−2σ sup
z�N�zx

C(|FQ|, N)/N,

so if θ �ε0 1 then IT (σ;µ) �ε,ε0 TQ
εz2−2σ|FQ|1−δ as long as C(|FQ|, Qr)/Qr � |FQ|1−δ for

r ∈ [min(τ, θ), τ + θ]. For example, given C(|FQ|, N) � |FQ| + N , we may take δ = 1 if
Qτ � |FQ| and θ ≥ τ .

With the smooth estimate Proposition 2.1 for 1/2 + ε0 ≤ σ ≤ 1, we in fact have

IT (σ; 1/2)�ε0,B

∫
t∈R

e−2|t|/T
∑
f∈FQ

(
Q−Bz2 + |Ẽ(f, s)|2 + (Y/X)2σ−1

∫
v

|E?
v(f, s)|2e−|v|dv

)
dt,

given parameters X ≥ Qε0z and Y ≥ 1 such that XY �ε0 Q1+3ε0 . (Strictly speaking,
Proposition 2.1 only applies for |t| ≤ Qε0/mT/m, but for |t| ≥ Qε0/mT/m we may use a weak
bound such as L(f, s)�m q(f, s)4 � (Q|t|m)4 [IK04, p. 100, Exercise 3].) This time we get

IT (σ; 1/2)�ε,ε0,B T |FQ|Q−Bz2 + T (zX)ε sup
z�N�zX

C(|FQ|, N)N1−2σ

+ T (Y/X)2σ−1 sup
1�L�zY

C(|FQ|, L)L1−2σ min(1, L/Y )2σ−1.

Here L1−2σ min(1, L/Y )2σ−1 = max(L, Y )1−2σ, so supL = supY�L�zY C(|FQ|, L)L1−2σ.
The cleanest setting may be Y = X = Qθ+2ε0 , say, where θ ≥ max(τ, 1/2). For σ = 1, we

again get IT (1; 1/2) �ε TQ
ε|FQ|1−δ as long as C(|FQ|, Qr)/Qr � |FQ|1−δ for r ∈ [τ, τ + θ].

For example, given C(|FQ|, N) � |FQ| + N , we may take δ = 1 if Qτ � |FQ| and θ ≥ τ .
(Alternatively, Y = 1 and X large would work just as well for σ = 1.)

Appendix A. Alternative approach with completely multiplicative L-series

Given P �ε0 1, formally define L1(f, s) =
∏

p>P (1 − λf(p)p
−s)−1 =

∑
n≥1 λ

′
f(n)n−s.

Under Ramanujan, the Euler product and Dirichlet series converge uniformly absolutely to
a common holomorphic non-vanishing function for <(s) ≥ 1 + ε0 if P ≥ m2/ε0 , since then
|λf (p)p−s| ≤ mp−1−ε0 < p−1−ε0/2 for p > P .

Proposition A.1. For suitable P �ε0 1, the following both hold: (i) the quotient L2 := L1/L
extends to a holomorphic non-vanishing function on <(s) ≥ 1/2 + ε0 with |L2(f, s)| �ε0 1
uniformly, and (ii) L2(f, s) = L(∧2, πf , 2s)L3(f, s) where L3 is holomorphic and non-vanishing
on <(s) ≥ 1/3 + ε0 with Q−ε �ε0,ε |L3(f, s)| �ε0,ε Q

ε uniformly.

Proof. First, we expand formally:

L2 =
L1

L
=
∏
p≥2

1− λf (p)p−s +
∑

j≥2(−1)jef,j(p)p
−js

1− λf (p)p−s1p>P
=
∑
n≥1

cf (n)n−s

where cf (p
j) = (−1)jef,j(p) = bf (p

j) for p ≤ P and cf (p
k) =

∑k
j=2 bf (p

j)λf (p)
k−j for p > P .

Under Ramanujan, we get

• |cf (pj)| = |bf (pj)| ≤
(
m
j

)
≤ mj, and cf (p

j) = bf (p
j) = 0 for j > m, for p ≤ P ;

• |cf (pk)| ≤ m ·mk ≤ m2k, and cf (p
1) = 0, for p > P (since bf (p

j) = 0 for j > m).
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Thus cf (p
j)� 1 for p ≤ P , while |cf (pk)| ≤ pε0k/2 for p > P provided P ≥ m4/ε0 . It follows

that cf (n)�ε n
ε+ε0/2, so cf (n)�ε0 n

ε0 (choose ε = ε0/2).
We now show the Euler product for L2 converges absolutely for <(s) ≥ 1/2 + ε0. First,

L2,p(f, s) =
∏

i≤m(1 − αf,i(p)p
−s) 6= 0 under Ramanujan for p ≤ P , with log|L2,p| � m

uniformly (note p−σ ≤ 2−1/2). For p > P , on the other hand, L2,p(f, s)−1 =
∑

k≥2 cf (pk)p−ks

is bounded by pε0−2σ/(1 − pε0/2−σ) ≤ 10p−1−ε0 , say. If P ≥ 10, then L2,p(f, s) lies in a
disk centered at 1 bounded away from zero, so |logL2,p| �ε0 p

−1−ε0 uniformly. Therefore∑
p>P logL2,p converges uniformly absolutely for <(s) ≥ 1/2 + ε0, and

∏
p≥2 L2,p converges

likewise to a holomorphic non-vanishing function on <(s) ≥ 1/2 + ε0, extending L2; then
log|L2| �ε0 O(mP + P−ε0/ε0)�ε0 1 so that |L2| �ε0 1.

The argument for L3(f, s) := L2(f, s)/L(∧2, πf , 2s) is analogous, since for all p - q(f) we
have 1/Lp(∧2, πf , 2s) = 1− ef,2(p)p−2s +O(p−4s). (To bound the contribution from primes
p | q(f), we use a bound like

∏
p|q(f)(1 +O(p−2σ)) ≤ (1 +O(2−2σ))ω(q(f)) �ε q(f)ε.) �

Here λ′f (n) =
∏

p|n 1p>Pλf (p)
vp(n) is completely multiplicative, so

1

L1(f, s)
=
∏
p>P

(1− λf (p)p−s) =
∑
n≥1

µ(n)λ′f (n)n−s.

Now define M1(f, s) :=
∑

n≤z1 µ(n)λ′f (n)n−s and Z1(f, s) := L1(f, s)M1(f, s)− 1.

Remark A.2. Given a large sieve inequality with λ′f (n) coefficients, complete multiplicativity
would allow us to analyze Z1 following [Bom65,Hux71] nearly verbatim. Nonetheless, since
we only assume a large sieve inequality with λf(n) coefficients, we will need to mold our
λ′f (n) sums into λf (n) sums, so that the technique of Section 2.1 applies.

Fix ε0 > 0 small. The zeros of L1(f, s) and L(f, s) coincide for <(s) ≥ 1/2 + ε0, in view of
the factorization L1(f, s) = L(f, s)L2(f, s). Since |L2(f, s)| �ε0 1 uniformly, a 2lth moment
bound for L on <(s) = 1/2 + ε0 transfers over to L1. To bound a suitable moment of Z1 on
or near the critical line following Bombieri–Huxley, it remains to bound the second moment
of M1(f, σ + it); but λ′f = cf ∗ λf by the formal identity L1 = L2 · L, so

M1(f, s) =
∑
n≤z1

µ(n)λ′f (n)n−s =
∑
n≤z1

n−s
∑
d|n

1n⊥P !µ(n)cf (d)λf (n/d),

where cf (d) is effectively supported on square-full d’s since λ′f (n) is supported on n coprime
to P !. We may now proceed as we did before for M(f, s), via the formalism of Section 2.1.

Similarly, to bound |Z1|2 on the line <(s) = 1 + ε0, we compute

Z1(f, s) = Oε0(x
−ε0/2
1 log z1) +

∑
z1<n≤z1x1

A′(n)λ′f (n)n−s,

where A′(n) :=
∑

n0n1=n
1n0≤x11n1≤z1µ(n1). Again expressing λ′f (n) via Dirichlet convolution

cf ∗ λf for n ⊥ P !, we may finish the same way as we did for Z(f, s).

Remark A.3. Strictly speaking we have only assumed a moment bound on <(s) = 1/2, but
presumably moments are no harder on <(s) = 1/2 + ε0. Alternatively, one could appeal to
Gabriel’s convexity theorem (applied to L), interpolating between σ = 1/2 and σ = 1 + ε.

Remark A.4. We could try directly working on <(s) ≥ 1/2 using the further factorization
L2(f, s) = L(∧2, πf , 2s)L3(f, s), assuming the prime number theorem for L(∧2, πf ,−). The
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potential pole at s = 1/2 (of order rf depending on f) may or may not complicate the
analysis.

Appendix B. Approximate formula for L in the critical strip

Nowhere above do we truly need to approximate L(f, s) in the critical strip: near σ = 1/2
such approximations are subsumed, in spirit, by the 2lth moment “Lindelöf on average”
bound that we have assumed; near σ = 1, naive approximations on σ = 1 + ε suffice.
Nonetheless, in view of moment proofs, and for ease of comparison with other techniques
(some of which directly bound zeros, without interpolation), it is convenient to work out
what the approximate functional equation gives, which may be close to the most efficient
unconditional approximation without assuming a strong ingredient like Lindelöf.

Following [IK04, p. 257], we take the cutoff function w(x) := κ
∫∞
x

exp(−y − y−1)d×y for
x ≥ 0, normalized so that w(0) = 1 (here κ−1 = 0.2277 . . . ). We record the following:

• w(x) + w(1/x) = 1, so 0 < w(x) < 1 for all x ∈ R>0;
• w(x) < κe−x and w(x) > 1− κe−1/x, reflecting the sharpness of the cutoff;
• the Mellin transform ŵ(s) :=

∫∞
0
w(x)xs−1dx is holomorphic except at s = 0, where

it has a simple pole with residue w(0) = 1;
• sŵ(s) = κ

∫∞
0

exp(−y − y−1)ysd×y = 2κKs(2) is even, so ŵ(s) is odd; and

• ŵ(s)� |s||σ|−1e−π|t|/2 uniformly for s ∈ C [IK04, p. 258, (10.57)].

Remark B.1. [IK04] derives the last estimate by plugging z = 2 into the “non-integer power”
series expansion of 2Ks(z) =

∫∞
0

exp(−y − y−1)z/2ysd×y to get

sŵ(s) =
πκ

sin(πs)

∑
k≥1

Γ(k)−1[Γ(k − s)−1 − Γ(k + s)−1]

for s /∈ Z (cf. e.g. [Iwa02, pp. 202–205, Appendix B.4]). It suffices to derive the bound
for |t| � 1, since |t| � 1 can be done by 2|Ks(2)| ≤ Γ(|σ|) � |σ/e||σ|−1/2 (Stirling) unless
σ � 1, in which case the bound easily follows by compactness (note |s||σ| → 1 as s→ 0). For
|t| � 1 one has sin(πs) � eπ|t| and the rapidly decaying sum over k is O(|s||σ|eπ|t|/2) (one
can handle terms with <(k ± s) ≥ 0 using Stirling, noting that 1/Γ(z) is entire; for terms
with <(k ± s) ≤ 0, one can first use the recursion for Γ to move into <(z) ≥ 0). It could be
interesting to find an alternative real variable derivation, using oscillation due to t.

B.1. Gamma factor bounds. As in [IK04, p. 94, (5.3)], assume the local parameters
κj = κf,j ∈ C of L(f, s) at infinity are either real or come in conjugate pairs, with γ(f, s) =

π−ms/2
∏

j≤m Γ(
s+κj
2

) = γ(f, s); also assume <(κj) > −1 for all j.

Proposition B.2 (Cf. [IK04, p. 151, (5.115)]). If −1/2 ≤ <(s) ≤ 3/2, then

|γ(f, 1− s)|
|γ(f, s)|

�m πm(σ−1/2)q∞(s)1/2−σ
∏
j

|s+ κj|
|1− s+ κj|

.

Furthermore, if Ramanujan, i.e. <(κj) ≥ 0, holds, then for −1/2 ≤ <(s) ≤ 1− ε one has

|γ(f, 1− s)|
|γ(f, s)|

�m,ε q∞(s)1/2−σ.

Remark B.3. [IK04]’s derivation, based on [IK04, p. 151, (5.114)], appears to be incorrect;
the factor of q∞(s)k/2 (here k := <

∑
κj) should be replaced with

∏
j≤m(|it+ κj|+ 3)<(κj)/2.
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(The definition of q∞(s) has a typo: |t+ κj| should be |it+ κj| or |s+ κj|.) Furthermore, the
implied constant in [IK04, (5.114)] appears to depend on an upper bound for <(κ1), . . . ,<(κm)
(due to the approximations =(z) arg z = π

2
|=(z)|+O(1) and <(z) log e = O(1) implicitly used

in Stirling for z = (s+ κj)/2 + 1), so it is not completely absolute as claimed in [IK04].

Proof. Note that Γ(
s+κj
2

)(s+κj) = Γ(
s+κj+2

2
), where <(s+κj+2) ≥ 1/2. By Stirling’s formula

[IK04, p. 151, (5.112)], |Γ(z)| � |zz−1/2|e−<(z) for z ∈ C with, say, <(z) ≥ 1/10 (consider

|z| � 1 and |z| � 1 separately). Let z =
s+κj+2

2
and w =

(1−s)+κj+2

2
, so <(w),<(z) ≥ 1/10

and δ := w − z = 1/2− σ ∈ [−1, 1]. Following [Har02, p. 929, Lemma 3.2], we compute

|wΓ(w − 1)|/|zΓ(z − 1)| = |Γ(w)/Γ(z)| � |z + δ|δ|(z + δ)z−1/2/zz−1/2|e−δ.
Crucially, if |z| ≥ 10, say, then |δ/z| ≤ 1/10 is small enough so that in the present standard
log branch, log(z + δ)− log(z) = log(1 + δ/z)� |δ/z| by comparing arguments modulo 2π.
Then (z + δ)z−1/2/zz−1/2 = exp((z − 1/2) log(1 + δ/z)) = exp(O(|z||δ/z|)) = exp(O(1)); by
compactness, the bound may be extended to all z, provided <(w),<(z) ≥ 1/10.

Finally, |z+ δ|δ � |z|δ � (3 + |s+κj|)δ � (3 + |it+κj|)δ by similar (but simpler) reasoning,
and e−δ � 1, so multiplying over j ≤ m yields

|γ(f, 1− s)|
|γ(f, s)|

∏
j

|1− s+ κj|
|s+ κj|

�m πm(σ−1/2)q∞(s)δ,

as desired. Furthermore, under Ramanujan, |1− s+ κj| ≥ ε and |s+ κj| �ε |1− s+ κj| for
−1/2 ≤ <(s) ≤ 1− ε, so the second bound immediately follows (note πm(σ−1/2) �m 1). �

Proposition B.4. If <(s) ≤ −6, then

|γ(f, 1− s)/γ(f, s)| �m

∏
j≤m

max(|s+ κj|, |1− s+ κj|)1/2−σ.

Proof. π−m(1−σ)/2+mσ/2 = πm(σ−1/2) � 1, so it remains to bound Γ(w)/Γ(z), where z =
s+κj
2

and w =
1−s+κj

2
. Here <(w) = <(1−σ+κj)/2 ≥ 3 via <(κj) > −1, and w− z = 1/2−σ ≥ 0.

Let a ≥ 0 be the largest integer such that <(z+a) ≤ <(w); then <(z+a) ≥ <(w)−1 ≥ 1/10
and δ := 1/2− σ − a ∈ [0, 1], so following the previous proof,

Γ(w)

Γ(z)
=

Γ(w)

Γ(z + a)

a−1∏
i=0

(z + i)� |w|δ
a−1∏
i=0

|z + i| ≤ max(|z|, |w|)δ max(|z|, |w|)a;

in the last step we have used δ ≥ 0, and <(z) ≤ <(z + i) ≤ <(w) for i = 0, . . . , a− 1. Since
δ + a = 1/2− σ, we conclude by multiplying over j ≤ m. �

B.2. Contour argument. Recall from [IK04, p. 94, (5.4)–(5.5)] the completed L-function
Λ(f, s) := q(f)s/2γ(f, s)L(f, s) and functional equation Λ(f, s) = ε(f)Λ(f, 1 − s), where
|ε(f)| = 1. If L(f, s) is entire, then as in [IK04, p. 258, (10.58)–(10.60)] we get

L(f, s) =
1

2πi

∫
<(u)=2

L(f, s+ u)Xuŵ(u)du+
1

2πi

∫
<(−u)=−η0

L(f, s− u)X−uŵ(−u)du,

the first term yielding
∑

n≥1 λf (n)n−sw(n/X) if <(s+ u) > 1, and the second term

− 1

2πi

∫
<(u)=η0

ε(f)
q(f)(1−s+u)/2γ(f, 1− s+ u)

q(f)(s−u)/2γ(f, s− u)
L(f, 1− s+ u)X−uŵ(u)du
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since ŵ(−) is odd; here η0 > 0 may be freely chosen.
Assume 0 ≤ σ ≤ 1. If η0 ≥ 10, then <(s− u) = σ − η0 ≤ −6 and <(1− s+ u) > 1, so by

Proposition B.4 we may safely expand L(f, 1− s+ u) as a Dirichlet series and consider the

pieces
∑

l≤Y λf (l)l
−1+s−u and

∑
l>Y λf (l)l

−1+s−u �ε Y
σ−η0+ε separately, for some Y ≥ 1. By

the triangle inequality, the contribution from “large frequencies” l > Y is at most∫
(η0)

Y σ−η0+εX−η0|u|η0−1e−π|v|/2q(f)1/2−σ+η0
∏
j≤m

max(|s−u+κj|, |1− s+u+κj|)1/2−σ+η0|du|

up to an Om,ε(1) factor, where v = =(u). But |s− u+ κj| ≤ σ + |u|+ |it+ κj|, and similarly
|1− s+ u+ κj| ≤ (1− σ) + |u|+ |it+ κj|, so max(|−|, |−|) ≤ (1 + |u|)(1 + |it+ κj|). Since
−σ ≤ 0, and q(f), 1 + |u|, q∞(s) ≥ 1, the integral is bounded by∫

(η0)

Y 2−η0X−η0 |u|η0−1e−π|v|/2Q1/2+η0
0 (1 + |u|)m(1/2+η0)|du|,

where q(f, s) = q(f)q∞(s) is assumed to be at most Q0. Now we split the integral as follows:

• for |v| ≤ 2η0, the integrand is at most Y 2Q
1/2
0 (Q0/XY )η0(4η0)

3mη0 , for a total over

v ∈ [−2η0, 2η0] of at most Y 2Q
1/2
0 (Q0/XY )η0(4η0)

4mη0 ;

• for |v| ≥ 2η0, the integrand is at most Y 2Q
1/2
0 (Q0/XY )η0 times (2|v|)3mη0e−π|v|/2 ≤

(40mη0)
3mη0e−|v| (note π/2 > 1), for a total of � Y 2Q

1/2
0 (Q0/XY )η0(40mη0)

4mη0 .

If η0 := max(10, (XY/Q0)
1/8m/40m), then we get a final contribution from l > Y of

�m Y 2Q
1/2
0 (Q0/XY )η0/2 �m,ε Y

2Q
1/2
0 e−η0/2 �m,ε,B (XY )−B

for B > 0 arbitrarily large, provided XY �m,ε Q
1+ε
0 (so that XY/Q0 �m,ε (XY )ε/2).

For “small frequencies” l ≤ Y , we shift to <(u) = η1 > 0 with −1/2 ≤ σ − η1 ≤ 1− ε, so
that Proposition B.2 applies. Taking absolute values gives a bound of

�m,ε

∫
(η1)

|du|q(f, s)1/2−σ+η1X−η1 |u|η1−1e−π|v|/2
∣∣∣∣∣∑
l≤Y

λf (l)l
−1+s−u

∣∣∣∣∣ .
Clearly |u|−1 ≤ 1/η1 and |u|η1 ≤ [(1 + η1)(1 + |v|)]η1 , and (1 + |v|)η1e−π|v|/2 ≤ (2 + 10η1)

η1e−|v|,
so |u|η1−1e−π|v|/2 ≤ η−11 (2 + 10η1)

2η1e−|v| �ε e
−|v| provided η1 ∈ [ε, ε−1]. Also, l−1+s−u =

l−sl2σ−1−u, so upon conjugation, the integral above simplifies to

�m,ε X
−η1q(f, s)1/2−σ+η1

∫
v∈R

∣∣∣∣∣∑
l≤Y

λf (l)l
−sl2σ−1−u

∣∣∣∣∣ e−|v|dv.
The above analysis yields the following approximation for L(f, s) for |t| � QεT :

Proposition B.5. If f ∈ FQ satisfies Ramanujan at infinity, and |t| ≤ Qε/mT/m, then∣∣∣∣∣L(f, s)−
∑

n≤QεX

λf (n)n−sw
( n
X

)∣∣∣∣∣
�m,ε,B Q

−B +X−η1q(f, s)1/2−σ+η1Y 2σ−1−η1
∫
v∈R

∣∣∣∣∣∑
l≤Y

λf (l)l
−s
(
l

Y

)2σ−1−η1+iv
∣∣∣∣∣ e−|v|dv

for 0 ≤ σ ≤ 1, provided X, Y ≥ 1 satisfy XY �m,ε Q
1+3ε, and η1 ∈ [ε, ε−1]∩[σ−1+ε, σ+1/2].



AXIOMATIZING BOMBIERI–HUXLEY 13

Proof. First we check that q(f, s) ≤ Q0 := 4mQ1+ε. Indeed, take t′ ∈ [mt/(2Qε/m),mt/Qε/m]
such that |it′ + κj| ≥ |t|/(3Qε/m) for all j ≤ m (the set of exceptions has measure at most
m|t|/(3Qε/m)). But f ∈ FQ and |t′| ≤ T imply

∏
(1 + |κj + it′|) ≤ Q by definition, and∏ 1 + |κj + it|

1 + |κj + it′|
≤
∏(

1 +
|t− t′|

1 + |κj + it′|

)
≤
∏(

1 + 3Qε/m |t|
|t|

)
≤ (4Qε/m)m,

where |t − t′| ≤ |t| since t, t′ have the same sign. Thus
∏

(1 + |κj + it|) ≤ 4mQ1+ε, and
the previous discussion applies since XY �m,ε Q

1+3ε �m,ε Q
1+ε
0 . The only missing point is∑

n≥QεX λf (n)n−sw(n/X)�m,ε,B Q
−B (clear from w(n/X)2 � e−2n/X ≤ e−Q

ε
e−n/X). �

Remark B.6. Some possibly useful choices of η1 include η1 = ε (for 0 ≤ σ ≤ 1), or perhaps
η1 = σ − 1/2 + ε or η1 = 2σ − 1 + ε (for 1/2 ≤ σ ≤ 1, or without the ε for σ ≥ 1/2 + ε).

Appendix C. Other techniques, and remarks

Is there a cleaner way to see that Z = LM − 1 takes its “essentially separable” form?
Generically we expect Z ≈ 0, so it makes sense to take A� 1 in 1− ZA. But overall, is

there loss from using log|F | ≤
∑

log+|1− ZA|? What does Nevanlinna theory have to say?
[Duk89] proves a large sieve with a T -integral (maybe only if T is large); perhaps could try

doing that too here, as that is what we really use everywhere, not the pointwise t bound.
Compare interpolation vs. direct bounding of zeros.
For direct approach, see e.g. [KM02, Lemma 18]. See also approach in the textbook [Mon71]

(cf. [Hux76]; [Duk89] uses [Bom87]’s simplification; [IK04, §10.4] may be a variant, with a
different cutoff?), and Turan approach (see e.g. [LOT19,TZ21]). Selberg’s refinement (see
[KM02, §3, based on the notion of pseudo-characters]) seems to only be for log removals, but
I may be wrong. See also Sarnak’s real zeros heuristic using explicit formula; could one rule
out internal cancellation by averaging x?

Regarding amplification and inflation techniques (see e.g. [IK04, p. 262, “Raising D`(s, χ)
to a suitable power. . . ”]): intuitively, the shorter the sums (z, x, etc.), the better the final
estimate should be, but is this really the case for interpolation?

Are there toy functions for which Riemann fails, but density is the truth? Could help build
intuition. Also, is the Euler product really necessary? Cf. [GORZ19] on Jensen polynomials.
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